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ABSTRACT

I
Most aerospace structural materials exhibit some degree of aniso-

tropic strain hardening. During the past few years, several methods
have appeared in the literature for introducing inelastic isotropic
material behavior effects into existing matrix analysis procedures using
the incremental theory of plasticity. A review is presented of these
methods and a step-by-step routine known as the "constant strain" method
is selected for the development of an anisotropic inelastic procedure.

A simple truss with one redundant is used to indicate the basic
ideas of the approach. Then the procedure is generalized to the more
important case of biaxially stressed structures. Nodal stresses are
evaluated step-wise for increasing load through the use of an influence
coefficient equation. The inelastic (plastic and creep) strains at one
load level are used as initial strains at the subsequent level to account
for nonlinear effects. The anisotropic behavior is considered by using
a proposed extension of Hu's strain hardening theory.

Several analyses of an aluminum alloy (2024-T4) shear lag structure,
which has been tested previously for the Air Force, are carried out,
first assuming isotropic and then anisotropic material properties. The
correlation between test results and those p5redicted by isotropic theory
is reasonably good. The anisotropic analysis gives predicted results
which are in slightly more consistent agreement with the test data.

The procedure is also modified to give an isotropic deformation
theory solution, which produces numerical results in a much shorter corn-
puter time than required for the incremental theory solution. In the
case of the shear lag structure investigated, the results by the two
theories are in very close agreement.

Creep test results of an llO0-F aluminum shear lag structure are
also available. An analysis of this structure by the proposed incre-
mental method is carried out and its predictions too axe in reasonably
good agreement with the test data. The 31OO-F material is very nearly
isotropic and no testing of structures exhibiting anisotropic creep is
known to have been performed. Hence the anisotropic creep capability
of the proposed method cannot be checked out against tests at this time.
A sample calculation is nevertheless carried out for a hypothetical
material having this characteristic.

The approach presented, which is simple in concept and execution,
is found to be a reasonably good phenomenological model of --- exceedingly
complex physical problem. The acccmpanying digital computer progrem is
believed to be very versatile, and well suited for the inclusion of any
other types of material nonlinearity that may be of interest.

iii.
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SYMBOLS

[ ) Rectangular matrix /

( ] Column matrix

qi Member load, any load acting directly on a member
th

Ou u ordinary stress component (normal or shear) at
a node point

0 3N_-2) 'PN1, '3N The normal stress components and shear stress cam-

ponent at node R - another designation for ou

Effective stress at node N

0* Relaxed effective stress at node N
N

0o Reference stress in Ramberg-Osgood Equation

rurut h stress component in linear redundant structure
due to the mth unit applied load

rv uth stress cn ponent in linear redundant structure
due to the v unit initial strain
th member load in the redundant structure due to

mth applied load

ith member load in the redundant structure caused

thh
Sby a unit initial strain at the jt member load

SMmth applied load

Cv v th component of initial strain

e(p)'v vth component of plastic strain
% th

(~ v camponent of creep strain

;(P)N Effective plastic strain at node N

Effective creep strain at node N

( Total (elastic, plastic, and creep) strain component

Exy Engineering shear strain

f Error

E Young's modulus

X

~ 4



*

T Temperature

Equ±valent time at start of creep cycle calculation

At Cycle duration (elapsed time)

Material constants in creep strain equation

Subscripted anisotropic parameters

a Increment (prefix)

n,e Nonlinear parameters in Ramberg-Osgood equation

k Cycle designation, superscript

N Nodal index

u,v Nodal stress coarponent or strain,'component index,
related to the nodal index as inaicated in equation

,Y Simple directional characteristic stress

a~xj. a yy Uniaxial stress in the x-x, y-y direction

6xx,*yy Plastic strain in the x-x, y-y direction due to
uniaxial x-x, y-y stress

17xy Shear stress in x-y plane

Shear strain in x-y plane
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SECTION I

fNTRODUCTION

With the introduction of high-speed, large-capacity, digital computers,
a number of investigators (References 1,4,7) have adapted essentially
linear matrix analysis methods to the solution .if redundant structures
where nonlinear material plasticity and creep properties are considered.
These methods have been either iterative or non-iterative step-by-step
numerical procedures.

The present work is an effort to explore, revise, and extend the
matrix method of analysis in order to apply it to a range of practical

aerospace structural problems exhibiting inelastic isotropic or inelastic
anisotropic material behavior. Thus, the intent is to concentrate upon
methods which are able to predict inelastic strain distributions in
irregular idealized structures in a biaxial stress state where materials
exhibit strain hardening and creep properties representative of those em-
ployed in aerospace construction.

A discussion of complete load reversal, although desirable for
plastic fatigue studies, is not included because the theoretical founda-
tion for such a procedure is apparently not yet fully developed. The
present formulation of elastic, plastic and creep loading, followed by
elastic unloading, while restrictive, is nevertheless of practical inter-

- est.

Of the proposed analytical methods, one by Denke (Reference 1) has
developed naturally from the matrix force method of analysis and consists
of including nonlinear plastic and creep terms in the equations for the
gaps at those cuts which are required to make the structure statically
determinate. The redundant forces, required to close the gaps and make
the structure continuous, are obtained by solving these nonlinear equations
by a Newton-Raphson procedure.

A second method reported by Kobayashi and Weikel (Reference 2) has
been developed from the direct stiffness method. Here, forces occurring
as a consequence of the inelastic effects are included in the nodal force
equations. The nodal displacements (or displacement rates, where creep
is considered) obtained by solving these equations impose equilibrium
at the nodes under the action of internal loads, surface tractions, and
prescribed displacements.

When the inelastic effects are accounted for by a flow (or incremental)
theory, the deformation is an accumulation of increments each governed by
the prevailing stress. Thus, when either of the'methods Just described
is used, one must obtain (for the governing equations) a series of solu-
tions, with one solution corresponding to each load increment. This re-
quires a considerable emount of computer time even for medium-sized
analyses.

1



The approach recamnended here, in addition to being conceptually
simple, does not require repeated matrix inversions. It was developed
from that proposed Ly R. Gallagher, J. Padlog and others at Bell Aero-
system (References 3,4). Input data, as in the case with these other
nonlinear anplyses, are generated by an elastic analysis; however, for
this approach, either the matrix force method or direct stiffness method
can be used. The problem, formulated in terms of stindard influence
coefficients for applieA load and initial strain, is reduded from a non-
linear to a linear one by using those strains obtained at the previous
load level to approximate the current inelastic strains.

Development of the anisotropic analysis is based on an extension
of the proposed anisotropic theory of Hu, Reference U1. The constant-
anisotropic-coefficient assumption of Hu is replaced by one in which
the coefficients are allowed to vary with the level of stress. The
formulation is then a simple modification of the isotropic procedure.
It is also shown that anisotropic creep can be included in a manner
similar to the isotropic creep.

V.

' ' ' ' ' il I'2



SECTION II

INELASTIC MATRIX METHODS

A. Formulation

An inelastic structural analysis can be carried out in two steps.
The first is the standard elastic solution where internal stresses and
accompanying strains are related through Hooke's law. The second step,
the modification of this elastic system to include inelastic strains,
is analogous to a procedure for including superimposed thermal strains.
The inelastic strains are defined as the differences between the total
strains and the elastic strains and are generally functions of the final
stresses, not those of the linear, elastic state.

The simple, pin-jointed, single-redundant truss, pictured in Figure
(1), illustrates the basic notions more clearly. All bars are consid-
ered to be elastic, except the vertical diagonal which can become plastic
and has a stress-strain relation represented by the curve shown in Fig-
ure (2). The applied load P is large enough to cause member 3 to become
plastic.

A solution might be obtained by first simply ignoring plastic strain
in member 3 and assuming all members elastic. The resulting stress
would then be of magnitude a. The actual stress for member 3, of lower
magnitude due to plastic yielding, is designated a(k) and the associated

inelastic strain e(k) in Figure (2). These stresses and strains are
related in the following equation.

a(k) = a + re(k) (1)

where:

a (k) is the actual final stress

0 is the elastic stress

e(k) the inelastic strain

r the redundant elastic stress for a unit value of
initial strain

To be more specific r is equal to the redundant stress in member 3
corresponding to a unit initial strain in member 3. Note that r must
be negative to cause a reduction of stress in the diagonal member.

An important feature to be observed about Equation 1 is that,

since the inelastic strain e(k) is a nonlinear function of the final

stress a(k), this equation is really a nonlinear relation to be solved

3



for a(k). This characteristic will always be present in the analyses
to be discussed in this report.

Equation 1 can be generalized to provide stresses in all members
of the structure and provide for inelastic strains in all members for
a variety of applied loads. This basic influence coefficient equation*
is as follows:

(o) =Eru](Pin + [rE Uv 1v (2)

The au's are the ordinary stress components at the various node

points of the structure. An element of [rumr] gives the th stress in

the linear redundant structure due to a unitth applied load, and
(PmI represents the actual applied loads. Also, an element of ruvi
gives the u stress component in the linear redundant structure dueth
to a unit initial strain at the v stress location in the unloaded,
statically determinate structure. Finally, an element of (ev) repre-

sents the actual initial strain at the vth stress location.

The problem is now reduced in essence to the determination of the
inelastic strains to use as the initial strains (eyV in Equation 2.

For a structure in a load-temperature-time environment, this task can
be rather formidable, because levi is a function of local temperature

and time, as well as the local stress history.

B. Example Problem

Continuing our study of the simple truss example of Figure (1), we
now allow all members to go plastic. The exact results for the defor-
mation and stresses in the truss, for nonlinear properties, are easily
obtained by direct numerical solution of the equations, and hence will
be used without development.

The step-by-step finite element method for determining the stresses
(Cu] and strains (cy] involves the use of Equation 2 and a nonlinear

stress-strain relation. This relation will be assumed to be a piece-
wise linear approximation of the Ramberg-Osgood stress-strain relation.

*The derivation of matrices [ru I and [ruv1 is given in Appendix VI.

II.



where e denotes the inelastic (or plastic) strains and is given by

and where

= total strain

a = member stress

E = Young's modulus

00 = reference stress (stress at secant modulus of 0.TE)

= nonlinear parameter

The first step, in applying the finite element method, is to obtain
the influence coefficient matrices [r ] and [r ] for the linear, re-

um uv
dundant structure. This requires specification of the geometry of the
structure and the (linear) material properties of the individual struc-
tural elements. The geonetry of the example truss problem is given in
Figure (I). TY - material is assumed to be an aluminum alloy with the
following constLauts.

E = 10 Tpsi, o 105 psi, 8 = 10
0

The approximate stress-strain curve used matches the Rsmberg-Osgood values
at 2000 psi stress intervals.

In this case, we find

070 .586 - .293 - .293f rum] t casje of t .s d load -2

for the case of the single applied load P.

5



C. Step-by-Step Methods

References 3 and 4 present what appears to be the simplest possible
approach to this problem from a camputational standpoint.* A non iter-
ative step-by-step calculation is performed in which all quantities in-
cluding the initial strains €V are incremented and then assumed to remain

constant in the ensuing load interval. The inherent difficulty in this
approach is to establish the connection between successive steps. Two
methods, both of which involve the initial strains from the prior step
to predict quantities in the current step are suggested. It is antici-
pated that by controlling the size of the interval one may achieve any
degree of accuracy.

The development herein is discussed only in the detail necessary to
analyze the redundant truss of Figure (1) being loaded for the first time
into the plastic range. Generalization to biaxial plasticity and creep phe-
nanena are discussed in the succeeding sections.

The step-by-step procedure for solving the problem is introduced by
rewriting Equation 2 in the form

{a (k)ý 1 mim + [rr jev(k1l)}3

where

k is the cycle designation

This can be regarded as the fundamental equation for the non-iterative,
step-by-step methods. The idea in formulating this equation, as indicated
by the cycle designating superscript is that the initial strains of the
previous cycle can be used to approximate the initial strains of the
current cycle. The strains of the previous cycle may be incorporated in
several ways, two of which constitute the constant stress and the constant
strain methods of analysis.

D. Constant Stress Method

As indicated previously, in the step-by-step procedure considered

here, one enters the kth cycle with applied loads Im in } and initial

strains jcv(k'l)}, the latter evaluated during the preceding cycle.

*These methods make use of devices previously used by others to solve
Inelastic problems; for example, S. S. ]Janson at the Lewis Research
Laboratory, NASA, Cleveland, Ohio, has previously carried out inelastic
analyses Of turbine discs involving samewhat similar techniques
(Reference 5)-S~6



The first operation of the current cycle is to determine {U(k)} frm

Equation 3 by direct substitution. The second operation is a determination

of { 6v(k)} for use in the next cycle. The constant stress method does

this in the most obvious way, by reading from the given stress-strain

curve the plastic strains Jv(k)} corresponding to the ou(k)'s (the

reason for the name "constant stress" is thus apparent). The operation
is indicated schematically in Figure (2).

The results of the application of this method to the example truss
roblem are shown in Figure (4), where the stress in the vertical member
Bar #3) has been plotted versus load. These results display a striking

defect of the method due to the development of a sudden and catastrophic
divergence, whose onset depends upon step size. This dependence is such
that any attempt to improve accura ,y reducing step size only hastens
the occurrence of divergence. An e. -..aanation of this behavior is given
in Appendix III. Because of this defect, the constant stress method in
this form must be eliminated from consideration as an acceptable method
for general use.

E. Constant Strain Method

The first operation of the constant strain method is exa tly the
same as the first operation of the constant stress method; auk) is

evaluated by direct substitution in Equation 3. Thereafter, one de-

termines 'V(k) for use in the next cycle as follows. Referring to

Figure (3), for each member, point A is determined with stress-strain

coordinates au(k) and a,(k)/E + *v(k'l). A relaxed stress a *(k) is
U uvu

now calculated with the same total strain, corresponding to point B on
the given stress-strain curve. Note that here the total strain, rather
than stress, remains unchanged--hence the name "constant strain" method.

The required initial strain cv(k) is the inelastic strain e(k) correspond-

ing to the relaxed stress, as indicated on Figure (3).

The results of applying the constant strain method to the truss
problem,; for the three step sizes 5000, 500 and 50 lb., are shown in
Figure (5). The accuracy, for a given step size, is not as good as
that of the constant stress method, but the analysis is now free of any
instability. The constant strain method is therefore selected for
further use herein. The discussion of the step size and of a method of
monitoring it is left for a later section.

-
7-



SECTION III

ISOTIROPIC ELASTIC-PLASTIC ANALYSIS

A. Biaxial Theory

Having presented the simple truss example of the step-by-step pro-
cedure, we proceed now to the case of more practical interest -- a bi-
axially stressed structure. The new procedure is identical to the one
already discussed for the simple truss with one exception. Because of
the biaxial stress we can no longer work directly from the stress-strain
curve to obtain the plastic strains for use in Equation 3; instead, we
must employ the well-known concept of an "effective" stress-strain re-
lationship in conjunction with a von Mises type yield condition and the
associated incremental flow relations.

The biaxial theory is described by a sunmary of the steps to be
used as a guide for a detailed description which follows. The constant
strain method used here is a step-by-step procedure which, after incre-
menting the applied load, can be applied in four parts:

1. Obtain the stress conponents at each node using the basic
Equation 3 by assuming the initial strains from tne previous
load level.

2. Using these stresses, calculate an effective stress at each
node.

3. Assume that the effective stress-strain relation for the
material, modified by including the elastic strain, corresponds
to data measured in a simple uniaxial tension test. Using this,
calculate the effective strain corresponding to the effective
stress.

4. Using the incremental flow relations, determine the inelastic
strain increments. The proportionality constant in these
equations is the ratio of the effective strain increment to
the effective stress.

At this point in the calculation, the applied load can be incremented
again and the cycle repeated.

When calculating the ordinary stresses (k) for the kth load

level using Equation 3 (Step 1), it is convenient to re-identify these
stresses by means of a new subscript N, as follows:

8

____ __S



*-(k)

* 3jN-1

((k)

The stresses are thus arranged in groups of three camponents (two normal
and one shear) at each node point N.

We now calculate the corresponding effective stresses Zk for each
of the nodes fram the von Mises type formula (Step 2)

(k k2) Ck)l)+ jykl2
= - X - (a ) + 3 ( ) (5)

Note that by this definition 'k) must be positive and is proportional

to the octahedral shear stress. This formula together with the stress-
strain data constitutes thb strain hardening criterion.

We now go to the tensile stress-strain curve (which is also the a vs
ET + •(p) curve) for the material of interest and, using the constant

S" strain method, read from it the corresponding effective plastic strain

;(p) ). This operation (Step 3) is identical to that previously de-
scribed for the uniaxial case on page T.

In accordance with the flow theory of plasticity, the increment in
the effective strain Aj(p)(k) over that of the preceding interval must
be calculated (Step 4). The increment will be either positive or zero,
depending upon whether plastic loading or elastic unloading (or reloading)
is taking place. Thus,

67 -)k ;(p)(k) - Nk-1)

when q-. is greater then any previous (Inelastic strain increaning)

9

p • •



C(p)(k) 0 (6b)

when (k) is smaller than a previous ZN (elastic unloadir caj rp],ading,

inelastic strain constant)

The increments in the ordinary plastic strain cimponents may now
be obtained using a Prandtl-Reuss incremental relationship.

()(k)

- k) N• -)" (k)

The total, ordinary plastic strain canponents are obtained by
addition,

Ae3N-2 a3N1-2 1/a

3N-1 -(k - 3N-23111 k

These caorents together pl th the new applied loads i(kdl)

may be substituted in Equation 3 to obtainonkml) in the next load

cycle.

1I0
• i'C")k '!(P (k-1) ,p)(k

' ".U' -"
! ! I



B. Determination of Calculation Step Size

It should be noted that, according to the constant strain method,

every predicted value of effective strain j(p)(k) together with its

accompanying value of effective stress "k) constitutes an approxi-

mation to a point on the actual effective stress-strain curve. The
excellence of the approximation is directly related to the loading in-
crement, as is shown in the truss results Figure (5). Thus it is only
necessary to monitor this agreement for one or more of the critically
loaded nodes to determine whether the step size is satisfactory. This
is illustrated below in connection with the shear lag structure investi-
gation.

C. Description of Shear Lag Structure

Several very useful tests have been performed for the Air Force
upon shear lag structures (Reference 7). The structure, loaded as shown
in Figure (6), is an integrally machined part of 2024-T4 aluminum alloy
stiffened along the loading (y) axis. The stiffener is tapered in
thickness from each end towards the center of the structure.

This structure was chosen originally because it is simple to work
with and .:ell adapted to analysis by both matrix methods when appropri-
ate idealizations are employed. When tension forces are applied to the
ends of tie stiffener, high stress gradients are induced in a manner
analogous to those encountered in aircraft structures.

The material properties essential to this analysis were obtained
from tension tests reported in Reference 7. These tests were performed
on coupons, machined from the parent plate, in the longitudinal or
x-direction and the transverse or y-direction of Figure (6). The data
resulting from these tests, Figure (11), indicate the presence of a
considerable degree of anisotropy. In the present study, three piece-
wise linear representations of stress-strain curves were fitted to these
points; two, RO and R02, in Figure (U1), are equivalent to Ramberg-Osgood
curves used in Reference 7; the third, R024, is a Grtmmman modification.
The modulus of elasticity of all the curves is taken as 10.3 x lop psi.
Note also that the maximum strains recorded are of the order of 0.010
in/in, whereas the maximum strains reached in the shear lag tests are
around 0.020 in/in. Thus there is same doubt as to whether the idealized
curve correctly represents the test material in this high strain region.

The locations of the strain gages for the test of the stiffened
plate are shown in Figure (13). The plate was loaded by applying tension
to the stiffener in steps of 1000 pounds to 6000 pounds, gage readings
being taken at each step. It was then unloaded in steps of 1500 pounds
to zero, and finally progressively loaded to failure. Buckling occurred
at a load of 23,000 pounds and fracture at 25,800 pounds. Data from this
test are plotted on Figures (14) through (22).
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D. Elastic Shear Lag Structure Analysis

The idealizations of the upper right quandrant of the shear lag
structure for a direct stiffness and a force method analysis are shown
in Figures (7) and (8) respectively. A typical element of the force
method analysis, Figure (9), consists of conventional bars and rectangu-
lar shear panels. Many previous idealizations have omitted the Poisson's
Ratio effect. The present idealization, however, incorporates this
effect in the manner described in Appendix II.

The basic element of the stiffness approach consists of a cluster
of four "Turner triangles" (References 8,9) to form a rectangle as shown in
Figure (10). The manner of obtaining the stresses is discussed in
Appendix I.

An elastic analysis under a unit applied load was performed by both
the force and the stiffness methods. These results are cnmpared in
Appendix I.

The inelastic analysis can be made using either of the two approaches
(stiffness or force method). For the present investigation, only the force
method is used.

E. Flow Theory Shear Lag Structure Analysis

The inelastic analysis was carried out using the Fortran 2 program
listed in Appendix V. This prog"sm is capable of carrying out isotropic
or anisotropic, plastic or creep flow theory analyses. The flow charts
and instructions for preparation and submission of data are also included
in Appendix V.

Before ccomparing the analytical and test results, let us look at a
plot of the tensile stress-strain curve, R02, and compare it with the
predicted effective stress-strain relationship for various step sizes.
Such a conparison is found in Figure (12) for the node corresponding to
the center of the specimen which is the point of highest strain in the
structure. It can be seen there that for a step size of AP = 500 lb.,
the agreement is rather poor. For AP = 50 lb. the agreement is much
better, while for AP = 5 lb., the predicted value lies directly on the
stress-strain curve. The 3IB 7094 conputer time for this best result and
a maximum load of P = 16,760 lb. is approximately 20 minutes.

The predicted strain distributions are shown in Figures (14) through
(21), together with the corresponding test values, along the two strain
gage lines. In these plots, the calculated results are linearly inter-
polated values between node points. Figures (14) and (15) give elastic
results; the agreement with test data is seen to be rather good, giving
the necessary confidence in the accuracy of the basic influence co-
efficient matrices. It is observed also that the spec imn achieves its
basic purpose of displaying a pronounced shear lag effect with the
highest strain occurring at the central node, as expected.

12
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As the applied load increases through 7070 lbs., the strains at the

central node'beccme plastic. During the tests, the strain gages
continued to function through an applied load level of 14,600 lb.; beyond
this point the x-gage failed to record. The y-gage failed also above a
load level of 16,760 lb., which, consequently, is the highest level con-
sidered in the comparison of test and analysis even though the plate did
not buckle until P = 23,000 lb.

The proportional limit for the tes" specimen material occurs at a
strain of approximately .004 in/in, as shown in Figure (11). Bearing this
in mind during an examination oP Figures (16) through (21), it is seen that
plastic behavior is primarily confined to a fairly small region around
the central node, and we thus have a case of contained plasticity. The
analysis predicts a very pronounced strain redistribution extending some-
what beyond this region. This is indicated by a comparison of the plastic
results with extrapolated elastic results shown as dotted curves on Fig-
ures (20) and (21).

As for agreement with test values, the analysis substantialiy undtr-
predicts the strain gage readings where plasticity is most pronounced.
Since the elastic results agree so much better, one must assume that the
difficulty lies somewhere in the plasticity part of the correlation. It
was mentioned previously that the idealization of the stress-strain curve
RO2M of Figure (11) was open to question at the high strain end because
of the absence of test points. Accordingly, an additional run was made
for a revised curve extending horizontally beyond the last indicated test
point. The plastic strains at the critical central node are increased
approximately 10% by so doing. This represents an appreciable closing
of the gap, but the gap nevertheless remains.

Calculations were also made based upon the previously mentioned stress-
strain curves ROI and R02 of Figure (Ii). The results for the central node
are shown on Figure (22). As might be expected, they depart appreciably
from the R02M predictions.

F. Deformation Theory Analysis

Solutions by a deformation theory have traditionally been considered
to be more easily obtainable than flow theory solutions. This is, of
course, because only the stresses at the final applied load level need
be considered, rather than the stress histories developed during loading.
It is therefore of interest to determine whether similar benefits are
attainable in the case of the finite element analyses currently being
considered.

Once again, a solution of Equation 3 is required, this time such that
the initial strains ev satisfy the deformation theory of plasticity. This

can be accomplished as follows. Equation 3, the "kth cycle" stress
equation of the preceding section, can be used intact if it is understood

that p(k) is the peak load at which the results are required and does not

change from one cycle to another as before. We must iterate to a solution
in order to obtain a satisfactory approximation to the plastic strains.

13



The intra-cycle procedure employed for the determination of the

equivalent strain for the k cycle is the same as before, namely the
constant strain method. At this point, however, the equivalent strain
itself, not its increment, is resolved into the node plastic ,strains by
utilizing an engineering adaptation of the incremental relations,
Equations 7, thus:

j~pl(k)6()() a(k) .1/2 ocy2 (k)

(pk)

((k) N ~() [(k)]k

gN (k) L J

These are now available for the stress equation of the next cycle.

Three analyses, one at P =U1,600 lbs., one at P = l1I,600 lbs.,
and one at P = 16,760 lbs. were performed on the shear lag specimen by

this deformation theory procedure. The results were practically identicalwith those shown in Figures (16) to (21). The convergence to each of

these results was obtained after less than thirty cycles of iteration.

The machine time for each calculation was approximately four minutes.

In the case of solutions like this, where the two analyses give

practically identical results, the d~eformation approach is naturally

very attractive because of the greatly reduced machine time. However,
the question remains of determining when to expect the results to agree
in this manner.

The IB4 program presented in Appendix V cannot be used for deforma-
tion theory analyses. However, minor changes can be made in the program
to permit calculations of this type to be carried out.

1xl
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SECTION IV

ISOTROPIC ELASTIC-PLASTIC-CREEP ANALYSIS

A. Introduction to Creep Theory

Strains due to creep constitute an additional form of inelastic strain,
and can be handled in a way analogous to that already discussed for bi-
axial plasticity by the flow theory. It is only necessary to select a
method for evaluating these time-dependent strains based upon the material
properties and to add them to the plastic strains prior to insertion in
the basic Equation 3.

A familiar relationship used to match the creep behavior in a tensile
creep test, performed at constant stress and constant temperature, is
(Reference 4):

e(c) =ty(e -1 ) (10)

in which

e(c) is the tensile creep.strain

t is the elapsed time

a is the constant tensile stress

1, ,Y yare empirical constants for the particular test
temperature

For this analysis the assumption is made that there exists an effec-
tive creep strain 1(c) in a biaxial situation which can be calculated
using Equation 10. In doing this the stress a is taken to be the von
Mises effective stress obtained from Equation 5. The further assumption
is made that this effective creep strain can be resolved into nodal creep
strains by use of a Prandtl-Reuss type of flow law.

The creep strain calculation must be generalized to situations in
which the stresses vary with time. One well-known procedure for doing
this, the strain-hardening rule (Reference 4), has been determined to be
most appropriate for the present purposes. Its use will be described

presently in connection with the kth calculation cycle.

B. Creep Theory Details

The calculation cycle follows a sequence similar to that described
previously for the isotropic elastic-plastic analysis. An additional
step is necessary, just after the plastic strains are obtained, to de-
termine the creep strains. The intra-cycle order of calculation is as
follows.
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Entering the kth cycle with applied loads pk)) with the
initial strains, plastic and creep, as calculated during the preceding

cycle, the stresses are calculated from Equation 3.

Theeffctie sreses a~()~obtained fromu Equation 5 are used to

obtain the effective plastic strains.

The creep strain increments at each node, for a specified time step,
are now determined by the strain hardening rule whith relates the strain
at a node to the corresponding stress and strain for thie previous cycle
by the introduction of. an assumed elapsed time.

Referring to Figure (23), one goes to the constant effective stress-

temperature curve (ak, Tk) relevant to the node and the cycle, and locates

upon it the point with ordinate j(c)(k-l). The corresponding abscissa,

designated t*(k), is called-the reference time and is generally different
from the actual elapsed time at the start of the cycle. The required
effective creep strain increment j(c)(k) is that corresponding to the

inerease in time fran t~ to (tWk+ Atk) as shown on Figure (23), Atk
being the selected calculation time increment.

The increment U(c)k is substituted into the Prandtl-Reuss type in-
cremental relations, Equations 7, together with the stresses indicated
there. The creep initial strains are then obtained as in Equation 8.

In smmry, the steps in the kth calculation take the following
order:

(i) Evaluation of Equation 3 to obtaining the -tress components,
OU(k)

(2) The calculation of effective stress according to Equation 5

(3) The determination of the node plastic strains

(.) The determination of the node creep strains

(5) The addition of the nodal plastic and creep strains to give
the initial strains for the next cycle.

C. Description of Structure and Tests

The description of the shear lag structure to be analyzed in this
section and tests for the'material properties may be found in Reference 7.
The shear lag structure was manufactured fram 3O0-F aluminum. It was
of the same physical dimensions as the structure of Figure (6). The
idealization of the upper right quadrant remains unchanged.
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Material properties for the creep analysis were obtained fro uni-
axial strain-time tests for constant tensile stress. The temperature
at which these tests were conducted was 206*C, the temperature identical
to that of the structural test. The curves for these tests are presented
in Figure (24) together with the fitted curves fram Equation i0. The
constants of the equation were obtained frum Reference 7 and are as
follows:

S= 0.650 x 10-4

y = 0.500

= o.700 x lo-3 in2 /lb

Ordinary tensile stress-strain tests were performed at room tempera-
ture on coupons cut from the x and y orientations of the plate material.
The data and faired curve are presented in Figure (25). Tensile stress-
strain data for 2060C are also plotted here. These data were obtained
from the intersections of the test curves on the zero time axis in Fig-
ure (24). A piecewise linear representation TCI was fitted to this
latter data.

The location of the strain gages on the structure is given in Fig-
ure (26). The shear lag specimen was tested for a total of three hours
at 206lC. An initial applied load of 1600 lb. was increased to 2020 lb.
at the end of the first hour. It was held constant thereafter to the
end of the test.

D. Results of Creep Shear Lag Analysis

The predicted strain distributions along the x-axis and along the
section x = 1 in. at t = 0.06 hr., t = 1.10 hr., and t = 3.00 hr.
elapsed times, are given in Figures (27) through (32), together with
the experimental data of Reference 7. Test data are not available for
the y-node strains at the center node, and so this correlation point of
critical significance does not exist.

The curve o. Figure (33), effective stress versus strain at the
central node, exhibits the shapes characteristic to the various regions
of the load-time sequence. The initial linear segment, representing
elastic loading is followed by the region of the negative curvature
representing loading into the plastic range, all at assumed zero time.
Thereafter, the applied load remains constant for one hour, during which
time there is a stress redistribution in the structure due to creep.
This particular node unloads, as evidenced by the reduction in effective
stress, although the total strain is growing continuously. The applied
load is now increased to 2020 lb. Beceause of the previous elastic strain
recovery, the effective stress at first goes up elastically, and then
becomes plastic once more. Once the applied load reaches its final value,
redistribution due to creep effects again takes place.

In the initial stages of creep the curve is very sensitive to time
increment size and it is necessary to choose exceptionally small time
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increments in this region if good accuracy is to be achieved. The time
increments employed are as shown in Figure (33).

Considering the simplicity of the expressions employed to describe
as complex a phenomenon as creep and the liberal assumptions made in the
process, the correlation between analysis and experiment, as evidenced
by the preceding graphs and also by Figures (34) and (35), is surprisingly
good.

18
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SCTION V

ANISOTROPIC ELASTIC-PLASTIC ANALYSIS

A. Anisotropy in Structures

Several "expanding yield surface" theories for extending the
isotropic plastic theory to provide for anisotropy have become available
within the last two decades. Each is based on experimentally determined
parameters and, therefore, each is biased in favor of specific test data.
The complexity and amount of testing required to obtain these parameters
differ considerably. Under these circumstances, no single theory can be
completely acceptable, but it is thought that a suitable theory must, at
least, be capable of evaluating the type of anisotropy associated with
biaxially stressed structures used in flight vehicle design without being
unduly complex in application. It would be desirable to have the pro-
cedure based on a well-known, accepted theory.

A particular type of anisotropy, the so-called "orthotropic symmetric"
type, develops during a cold rolling process where the material is length-
ened and thinned with no appreciable change in width. Since cold rolled
sheet and plate are frequently used in aerospace structures, this type of
anisotropy may be anticipated and is considered here.

A theory proposed by Hill, Reference 10, has been widely accepted
as the most straightforward extension of the isotropic theory. The formu-
lation, however, is not very convenient for numerical step-by-step compu-
tation. A modification of Hill's theory proposed by Hu, Reference Ii,
however, is very tractable to formulation into the matrix inelastic pro-
gram discussed previously in this report. The Hu procedure has two dis-
tinct advantages:

(i) It employs a von Mises type hardening surface, associated flow
law and effective stress-strain relationships in appropriate
form.

(2) It requires a minimum of material data: simple uniaxial and
shear stress-strain tests on coupons cut in the directions of
the orthotropy.

B. Hu's Strain Hardening Theory

A summary of Hu's theory is presented to establish its limitations
and provide background for the necessary modifications to obtain a more
general theory.

The isotropic expressions for effective stress, Equation 5, and
associated incremental relations, Equations 7, are modified by means of
anisotropic parameters (air). These are constants in Hu'la theory. Here

it is more convenient to introduce the 1-1, 2-2, etc.,directions instead
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of x-x, y-y, etc. The modified expression for the effective stress is

a= [(Yi 2(al - a22 + 23(a22 )+ -a 33(a 33 " )

+ 3*% 12 + 30'55O23 + 3(u66) 
•

The incremental flow equations are

a l[cJJ all - '12a22 ' 31'33]

-- . = alla + - ' 23a3

de -dý a -~a + a 11)33 '31a, '23a22 + (12)3
ae,2 = 2°

ao [3rLa]

do di
623~ a 5523

de3.L = d---__ a¢3-L J -•6

Equations I. and 12 are written for the case where the reierence axes
are the principal axes of anisotropy.

The anisotropic parameters are determined by means of a total of
six, simple, directional, stress-strain tests (i.e., uniaxial and shear
tests), where, alternately, all stress ccmponents are equal to zero
except one. Fro each of the six tests a characteristic stress, such
as an approximate yield stress, is read off. Then substituting each
of these results into Equation U in succession, we may write

+ Of 2 I/ 2

3 V1)(3)
~ K 2  

/K . 2  
(3

332 = 1 23 KY3  a55 31

where K = the effective characteristic stress

Yjj =the simple directional characteristic stress

20
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It remains to assume an effective stress-effective strain relation-
ship. Hu shows that it is acceptable to assume the stress-strain data
associated with one particular simple tension test as the effective re-
lationship. It can be seen frcm Equations 13 that this implies setting
one tii equal to unity.

Thus, in particular for a 2 2 = 1, from Equations 11 and 12:

a22
(114)

d = de 2 2

Now consider Equation 12 for simple stress-strain tests in the other
directions. Then

d ell = al d

dod3
de 33 = 33337

de1  = 3c,4alo1 2 i (15)

d!
de2 3  = 3a 5 5 a2 3 -a

SdZ
de 31  = 3y 6 6 "31 a

or
di 1 dea _ 1 de 1 de2 1 de 1_ 1 e

13 d 2 3  -_ d 3 1

Da 32 a1 33  '33 30,44 012 355 023 3(Y 6 3l

These equations say that, with the anisotropic parameters constant for
strain hardening, the simple, stress-incremental strain relations must
be proportional to the effective stress-incremental strain relationship.
The implication is that the integrated forms of Equations 15, that is,
the simple, directional stress strain curves, are thus prescribed. These
may or may not be a reasonable fit to the test data for the material bf
interest. Obviously, only when the fit is good can one hope for Hu's
theory to give acceptable results for all types of loading.

Based upon the Hu theory, it becomes relatively easy to obtain
anisotropic solutions using the previously developed isotropic inelastic
procedure and corresponding digital computer program. It is only nec-
essary to substitute the appropriate anisotropic constants for their
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isotropic counterparts, for which a Of , "Ofil cv6 12 23 31 2

C. Extension of Hu's Theory

It is in the determination of the parnneters that an'extension to
Hu's theory is made. Except for the special case pointed out in the pre-
ceding section, these parameters should not be constant for a strain
hiardening material. but should be variables dependent upon stress level..
The objective, obviously, is to determine the variation in a manner that
allows for all of the simple, directional stress-strain curves to be
correctly reproduced. This can be accomplished by a consideration of
plastic work.

In the current approach, one continues with the assumption of the
existence of an effective stress-strain relationship. Then the basic
notion is that the anisotropic parameters are determined such that, for
equal amounts of plastic work done duvIng simple directional stress
strain tests in all directions, the effective stress level reached will
be identical.

Accordingly, for a tensile specimen in the 1-1 direction, one calcu-
lates the plastib work w performed during a uniaxial test by the formula

w =f' del (16)

Let the corresponding maximum stress reached be identified by the super-
Iscript (I), i.e. all. For a similar test in the 2-2 direction, and for

which the amount of plastic work performed is identical, the corresponding

maximum stress reached is aI2 I Since the amounts of work done in the two
I Icases are the same, -a? and a 2 2 correspond to the same effective stress

-IC • By means of Equation 11 we have

( ~ )2 1 ) Ci22 ( 22)(1 )

This expression constitutes a relationship defining crU and a22 as

functions of a. Similar relationships dan clearly be found for the cther
'ii's. Thereafter, the •i,'s can be determined as functions of Y by re-

course to the a definitions of Equations 13.

It is convenient to again select the 2-2 direction stress-strain
curve as the one defining the effective stress-strain relationship.
This results in • being equal to unity once more.

22
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The antual evaluation of the other a's as functions of a follows
easily. Figure (36) indicates schematically.'how the plastic work done
in each simple directional stress-strain test can be plotted as a function
of stress. Then for a given amount of plastic work, and reading off the

I Icorresponding stresses and 022 for example, by Equation 17 one finds
that

("22) (18)

all ./-,.\!

Using this and similar' relationships in the other directions, curves
,representing all of the aIs as functions of .6 may be constructed. The
#ncQrporation of this information in the step-by-step calculation pro-
cedure is discussed in the next section.

D. Anisotropic Theory Details

The detailed step-by-step calculation procedure to be followed in
the case of anisotropic material in a biaxially stressed structure is
very similar to that previously discussed for isotropic materials.
Accordingly, only the differences will be stressed.

As before, one starts the kth calculation cycle by evaluating
(k)to~]" by means of Equation 3. This operation employs the initial

s tain of the preceding cycle {(()(k-)

The next opration is to evaluate the effective stresses at each

of the nodes, 8 
, by Equation ll, modified .for the biaxial case to

(~k) [(k-1)(~k)2 (k1 (k) (k) ~ )2

(19)

+ 3 1 a(

We continue here our assumption that the 2-2 direction has been selected
as that in which the effective st.ess-strain relationship is defined;
hence c122 .
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Note that if the Hu theory is being used, the aijts are all known

constants. If the modified theory is being employed, the variable cijIs

are those that have been evaluated during the preceding cycle, (k-i).
This is in keeping with the overall nature of the analysis as a szep-by-
step procedure.

Having determined the k)'s, one can now go to the curves repre-
senin (k)R (k)an (k)

snigthe c sasfunctions of a to evaluate ai YC1 n
After having also determined •(p) and A•(p)(k) as before by the

constant strain method, these quantities may be substituted into afinite equivalent of Equations 12 specialized for the biaxial case, to
yield A(p4 (k) [

A (k) =k r() " (k) - (k) (~

3N-2 _3k_-2 3N-1

(k) A- I (k W (k) a (k (0
AC(3 -l _k 3N l -a2 '3N-2J(0

(kk)k)

Prom these, the strain components ¢(P) •k)- (P) (k) and ,(p) (k) are
3N-2' 3N-1 3N

obtained by addition, as before, using Equation 8.

After incrementing the applied load the sequence can now be re-
peated for the next load cycle.

E. Rotation of Axes of Anisotropy

Anisotropic symmetry may occur in a structure for which it is con-
venient to choose coordinate axes that are rotated from the orthogonal
axes of anisotropy. The corresponding expressions for the inci-eUentnl
flow equations and effective stress equations are derived in Appendix IV.
The derivation is limited to the case of biaxial stress where the 3-3
and z-z axes coincide. A method of obtaining the shear anisotropic co-
efficients is also indicated.
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F. Anisotropic Analysis of Shear Lag Structure

It has been pointed out earlier that the 2024-T4 aluminum alloy of
the shear lag structure tested for the Air Force (Reference 7) displayed
considerable anisotropy as shown in Figure (11). The structure had been
analyzed for isotropic strain hardening based upon the curve R2O in
this figure, and the results discussed in Section III. A corresponding
anisotropic strain hardening analysis has also been carried out, employing
first the Hu theory and then the proposed extension.

Material stress-strain data is available along two of the axes of
anisotropy, the rolling or x-x (1-1) direction, and the long transverse or
y-y (2-2) direction. This data has been plotted and discussed in
connection with Figure (11); it is replotted for convenience in Figure (37).

The additional required, but missing, test data is (a) tensile stress-
strain data in the short transverse or z-z (3-3) direction and (b) shear
stress-strain data in the x-y plane. A reasonable assumption to make for
engineering purposes for (a) is that the long and short transverse properties
are identical; this is made in the analyses to follow. In the case of (b),
the missing shear data, the following is done. First, a shear stress-strain
curve is obtained based upon the tensile curve in the rolling direction,
together with the assumption that the material is isotropic and governed by
the incremental theory of Section III -- specifically, Equations 5 and 7.
Next, a similar shear stress-strain curve based upon the tensile curve in the
long transverse direction is obtained. Finally, a faired-in average of these
two curves is taken to represent the missing shear stress-strain relation.

In order to apply the ru theory, one must first select four character-
istic stresses to represent the directional stress-strain curves, as dis-
cussed in Section V-B. These are the quantities Y, Y2 2, Y3 3 andY of
Equations 13. We arbitrarily choose the proportional limits from the four
curves just discussed for these values; they are

Y U =51 ksi

Y22 = 32 ksi

Y33 = 51 ksi

Y12 = 22 ksi

Since the simple directional stress-strain curve in the 2-2 direc-
tion, i.e. RO2M, is selected for the effective stress relationship, the
effective stress characteristic value K is also 32 ksi. Substituting
these values in Equations 13, one can solve for the necessary anisotropic
parameters. This information is all that is required to carry out an
analysis of the shear lag structure by the Hu theory.

As pointed out previously, once the anisotropic parameters Il' 0 22 ,

t12 and % have been specified and one of the stress-strain curves

chosen as the effective stress-strain curve, the remaining simple direc-
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tional stress-strain curves are prescribed. Let us now examine the con-
sequences of our current parameter selection. Since only test data in
the 1-1 and 2-2 directions are available, we shall concentrate on these.
For this special case, Equations ii and 12 can be easily manipulated to
yield

(21)d el d !

Using these expressions, one can construct a all stress-strain curve.

Such a curve is shown on Figure (37). As can be seen, the fit with
the 1-1 test data is very poor. Apparently, one could do better by
arbitrarily choosing for the 1-1 characteristic value Y a much lower

value than 51 ksi -- perhaps in the neighborhood of 35 kai. Nevertheless,
it is clear that in this case it would still be impossible to get a
really good fit because of the fundamentally different shapes of the two
stress-strain curves, especially in the region. of their knees. It will
turn out that, in the case of the shear lag structure, this selection
is not critical, because of the fact that stresses in the 1-1 direction
are very low, campared to those in the 2-2 direction.

In order to carry out an analysis of the shear lag structure based
upon the extension to the Hu theory, one must first evaluate the plastic
work done in each of the simple directional stresss-strain tests as a
function of the applicable stress. Using this information in the manner
discussed previously, one can then obtain the anisotropic parameters as
functions of effective stress. This has been done, assuming that it is
sufficiently accurate to represent the curves by a small number of
connected straight line seanents. The key values of the resulting cy's
are given in the accompanying table. Corresponding total strains j
( = j)E * are also listed.

32000 .00310 0.394 1.000 0.697 T
37000 .00378 .510 1.000 .755 -

40000 .00435 .590 1.000 .795
43000 .00509 .660 1.000 -.833 "
46000 .00622 .742 1.000', .871
48000 .oo734 .809 1.000 .905

9000 •.00800 i.835 1-000 . .918
51000 ;.00980 .892 1.000 .945
5400 0 03800 .930 1.000 .965
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In the preceding table, the reduction 'Sp number of independent anisotropic
parameters is a consequence of the assumptions which had to be made for
the missing stress-strain curves.

The value of unity for t22 is in accordance th our continued

selection of the tensile stress-strain curve ROMi e y-y or 2-2
direction as the basis for our effective stress-strain r ationship.

It might be reiterated that, because of the manner in whlb the cy s
are derived in this caseall of the simple directional stress-st n
curves are matched as closely as desired.

Using first the anisotropic parameters selected as described for
the Hu theory, and then for its extension, the shear lag structure has
been analyzed. The results are presented in the next section.

G. Discussion of Results

Sane of the highlights of the two anisotropic analyses are pre-
sented in Figures (38) through (40). Corresponding results obtained
previously and based upon isotropic theory are also included for cam-
parison.

Figure (38) refers to the central node of the shear lag structure
and shows the variation of the total strains in the x and y directions
with increasing applied load. The isotropic result is replotted from
Figure (22) ;-- specifically those curves based upon the effective stress-
strain curve R02M.

It can be seen fran Figure (38) that the most flexible analysis
predictions, that is, those for which the total strains are the largest,
are obtained by the isotropic analysis. The analysis based upon the
extension to the Hu theory is somewhat less flexible, while the Hu
theory results are the stiffest. Also, the differences between the
three analyses are less in the y direction than imthe x direction.

These observations are clearly in agreement with the nature of
the material stress-strain relations upon which the analy.e• are based.
In all three cases, we are assuming that the y-y curves are identical,
that is, all are represented by RO2M. Referring to Figure (37), -in the
case of the isotropic analysis, we are also assuming, in effect, tha t
the x-x stress-strain curve is identical to the y-y curve R02. The
x-x curve for the extension to the Hu theory is seen to be somewhat
stiffer than R02M, while the x-x curve for the Hu theory is by far the
stiffest of the three.

Comparing the analyses with the test data, all three analyses sub-
stantially underpredict the test points in the high applied load regime,
and more so in the y than in the x direction. It is interesting to note
however, that while the anisotropic analyses make these differences even
greater, they do have the virtue of making the camparison more consistent
as between the x and y directions. Thus it would appear that the
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anisotropic nature of the 2024-T4 material does influence the strain
distribution in the shear lag structure, and that the anisotropic analyses
can detect this tendency.

Figures (39) and (40) show the strain distributions along the two
strain gage lines of the test structure. In addition to the isotropic
predicted results, replotted from Figures (20) and (21), anisotropic
results based upon the extension to the Hu theory are presented. They
indicate that while the differences are not dramatic, they do in fact
exist.
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SECTION VI

ANISOTROPIC ELASTIC-PLASTIC-CREEP ANALYSIS

A. Anisotropic Creep Theory

The application of matrix analysis procedures to problems involving
anisotropic creep is at present academic. Neither meaningful analytical
research nor appropriate test data has been found. Therefore the pro-
cedure presented here for anisotropic creep is a simple extension of
that already described in previous sections. Accordingly, only the
difference and additional assumptions are discussed.

Strains due to anisotropic creep can be handled in a way similar to
those due to isotropic creep. The step-by-step procedure has only to be
modified for the anisotropic behavior by substituting Equations 19 and
20 for Equations 5 and 7 respectively in the manner described for time
independent plastic anisotropy in Section V-D. The additional assumptions
implied by this simple extension are the following:

(1) The anisotropic parameters calculated from zero time simple
directional tests (by either Hu theory or the proposed extens-
ion) are valid for anisotropic creep.

(2) The effective creep strain equation, Equation 10, remains valid
and the empirical constants (CR,y) are determined for the
tensile creep test in the assumed effective stress-strain di-
rection.

Because testing of structures exhibiting anisotropic creep has
apparently not been done, the anisotropic creep procedure cannot be
checked out against tests at this time. However, the results of a
sample calculation are presented for a hypothetical material having
this characteristic.

B. Sample Problem

The 11O0-F aluminum shear lag specimen, already analyzed for isotropic
creep, is used for an an4sotropic creep analysis making the following
assumptions:

(1) All the uniaxial data (Figure 25) employed in the isotropic
creep analysis is assumed to refer to the y-y (2-2) effective
direction of the anisotropic creep analysis.

(2) The plastic anisotropic parameters (extension of Hu's theory)
for the effective stress-strain curve of the 2024-T4 aluminum
alloy material for successive levels of stress, 32 ksi, 37 ksi,
40 ksi, etc., are arbitrarily chosen for the stress levels,

2 ksi, 3 ksi, 4 ksi, etc.,of the U00-F aluminum effective
stress-strain curve TCi (Figure 25). Thus:
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al 2_Y_ 0'__ 22 'Y4 4

2000 .000222 0.394 1.000 0.697
3000 .000359 .510 1.000 .755
4000 .00054o .590 1.000 .795
5000 .000815 .660 1.000 ,833
6000 .001256 .742 1.000 871
7000 .001967 .809 1.000 .905
8000 .003038 .835 1.OOO .918

10000 .007110 .892 1.000 .945

This means that the uniaxial x-x (1-1) predicted stress-strain curve and
the shear x-y stress-strain curve are arbitrarily stiffer than the
corresponding isotropic curves.

The node strains obtained, using the anisotropic assumptions for
load P = 2020 lbs at time t = 3 hrs, are presented for the x-axis and
along x = 1 in. in Figures (41) and (42) respectively.

In general, the anisotropic results appear to'be stiffer than those
for the isotropic case, and this is especially true for the vertical gage
line, where the anisotropic shear strains are of the order of 3/4 of the
isotropic values. This should be expected, due to the fact that the
anisotropic parameters used are all less than, or at the most equal to,
their isotropic equivalents.
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SECTION VII

CONCLUSION

The linear, matrix structural analysis methods currently in general
use throughout the aerospace industry have recently been extended to in-
clude structures loaded into the inelastic material behavior regime. However,
very littlQ published information is available co.relating predicted

results with the test data.

The current report recommends a simple analytical approach to such
problems. It is based upon the concept of initial strains in combination
with a suitable matrix of influence coefficients, obtained by standard
linear matrix structural analysis methods. The initial strains are those
associated with plasticity and creep.

Some particularly useful tests of aluminum and aluminum alloy shear
lag structures have been performed previously for the Air Force. These
structures have been analyzed by the recommended method, and the result-
ing agreement (for both the plasticity and the creep tests) is considered
to be very encouraging. On the other hand, additional testing must be
carried out and correlations with analysis made before the method can
be considered as fully evaluated.

In the meantime, the writers believe that sufficient confidence in
the method has been established that it may now be used in practical
engineering applications. For example, it should be immediately useful
in such problems as predicting inelastic strain distributions around
stress raisers in simple structural components.

As for the influence of anisotropy, it has been shown that this
material property can be readily accommodated in the reconmmended procedure.
Calculations made for the 2024-T4 shear lag structure indicate that, in
this case at least, anisotropy plays a minor but discernable role in de-
termining the strain distributions. This evidence is inconclusive,
because in this particular test, while the material itself is decidely
anisotropic, the stresses normal to the direction of the applied loads
are quite small.

It is recommended that in cases where doubt exists as to the im-
portance of anisotropy, it be included in the analysis. Certainly in
such examples as the shear lag structure, the additional complexity in
the use of the computer program is very slight.

There is one very important restriction implicit in the method pro-
posed in this report. Essentially, this method applies only to a struc-
ture in which the material is initially in the virgin state, and there-
after experiences only continually-increasing applied loads until failure
occurs. This limitation can actually be relaxed to the extent that
elastic unloading followed by reloading can also be acconmdated, but
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completely reversed loading is specifically excluded. For the latter
case, a different plasticity theory is needed. It is important that a
technique for handling such problems be developed because of the need
for such applications in fatigue work. Efforts toward removing this re-
striction are currently under way under government contract.

Other than the preceding, the largest remaining obstacle to com-
plete inelastic analysis of practical aerospace structures is believed
to be the dearth of appropriate material property data, and constitutive
laws to describe them.
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SECTION VIII

FIGURES
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APPENDIX I

ELASTIC ANALYSIS OF SHEAR LAG STRUCTURE

A. Idealization of Shear Lag Structure

As stated in the introduction, when a problem is formulated by
means of a standard influence coefficient approach, the necessary linear
analysis may be carried out using either the force or displacement
method. Since published correlations between results of the matrix force
and direct stiffness methods of linear elastic analyses for redundant
structures have, in the past, left room for doubt as to the equivalence
of results, this Appendix presents a comparison of the stresses from two
idealizations of the simple shear-lag stiffened-plate structure, Figures
(7) and (8). In the past, discrepancies have been due in part to a
marked difference in the arrangement of node points for corresponding
idealizations, and also to the fact that techniques for obtaining node
stresses in finite element analyses are still being improved. An attempt
was made to keep the idealizations as comparable as possible with respect
to location of nodes and the determination of stresses.

B. Force Method

The idealization for the force method may be seen in Figure (8).
It comprises conventional bars and shear panels located in the
manner shown. The analyses of some previous idealizations of this type
have omitted the Poisson's ratio effect. This effect can be incorporated
in the manner described in Appendix II.

C. Stiffness Method

The idealization for the stiffness method consists of "Turner
triangles," which are located as shown in Figure (M). The basic theory
of the triangle is to be found in References 8 and 9.

While the conventional procedure was used to obtain node stresses
for the force method, comparable stiffness-method stresses can be cal-
culated in several ways. A recent paper, Reference 9, suggests two means
of obtaining node stress, one of which was employed in the analysis.
This method will be reviewed briefly.

Figure (10) represents a cluster of triangles. It is required to
find the stresses at the node common to triangles P to W. The node
forces for each triangle at this apex are obtained as described in
Turner's former papers. Summing the forces on a vertical section through
1 in both directions gives

v PQ R S
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Analogous results X and Yh are obtained fur the corresponding horizontal
cut.

The node stresses at the node are

X
a = x (ct + dt)

~p a

y
a ' (at + btr u

(at + bt) + (ct +dt

where a, b, c, and d are as indicated and t is the thickness.

D. Comparison of Elastic Results and Perspective

The results are correlated by means of the curves appearing in
Figures (43) and (44) with calculated values frcm the experimental data
of Reference 7.

The correlation between the stresses derived from the force method
and from the stiffness method of analysis is excellent and may be re-
garded as exact for engineering applications. The largest discrepancy
is in the direct stresses in the x direction at the middle of the plate
as shown in Figure (43). Even in this region the difference is quite
small. It is believed that an even closer agreement could be obtained
by modifying the idealized structure to provide square shear panels
adjacent to the reinforcement and a finer grid at the plate center.

The largest discrepancy between analysis and test results is
located in the region of the plate center. Reference 7 indicated that
considerable bending was exhibited by the structure as the ends of the
stiffener were loaded. The extent to which this affects the gage
readings was not determined; however, it may be anticipated that the
effect be greatest near the middle of the plate. The curves on Figure
(43) reinforce this impression.

On the basis of the excellent agreement noted here, it can be con-
cluded that the incorporation of plastic and creep effects into the
present method of structural analysis will not be restricted in any
way by the particular linear analysis method employed.
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APPENDIX II

POISSON' S RATIO EFFECT

The strain energy relationship for an elastic plate in terms of in
plane stresses is given by the volume integral:

2E R ox + oy - 2 va xy 2(l + CZd
V

The idealized structure corresponding to a rectangular plate for
a finite element matrix force analysis has orthogonal bars taking only
normal stresses and panels in pure shear. Figure (8), the shear-lag
specimen, represents a typical idealization of this type. Defining

x and a as the axial stress in the bars and Zx as the shear stress
Mc yy

in the panels, the strain energy U' of the idealized structure is
sometimes taken as:

= •- f * 2 2 + 2(l, +v)]dV

V

Comparing the plate strain energy U with the idealized structure

strain energy U' it is obvious that the finite element expression ne-
glects to account for the interaction term of the plate (- 2v a ay).qryy
which is due to Poisson's ratio. This uncoupling of the normal stresses
has the effect of making the Idealized plate less rigid than the actual
plate. The finite element idealization is refined by including the term

(- 2v B__ ) in U' making the model more consistent with the elastic
plate. • •

The sketch, Figure (9), shows a shear panel with adjacent axial
load carrying bars. Assume the structure represents a portion of a
plate structure 1 inches lrng, b inches wide and t inches thick. The
normal stresses at one corner of the idealized structure are designated
a, and a 2 in the x and y directi-ons respectively. It is sufficiently

accurate in accounting for the interaction term to assume that the normal
stresses are constant over the plate corresponding to the shaded quadrant
and also to assume that these stresses are equal to a1 and a2 , the values

at the corner. The strain energy term to be included is represented by

2 a1q2 &1 2
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where 112 represents the interaction flexibility influence coefficient.

Carrying out the integration over the quadrant of the plate, the in-
fluence coefficient is evaluated.

This term together with the reciprocal term c21 and similar terms for

other biaxially stressed areas, when included in the flexibility matrix,
account for the Poisson's ratio effect.
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APPEDIX Iii

INSTABILITY ANALYSIS OF MIE CONSTANT STRESS AND CONSTANT STRAIN METHODS

The stability of the two methods is easily tested by determining
whether perturbations introduced into the analysis grow or decay with
succeeding steps. It is instructive, however, to take the following
approach. In place of the ccnputed quantities, intrcduce exact quanti-
ties, signified by a caret and associated error terms, in the manner

(k))- t^k) k III-i

The exact relation is taken to be

-'i [rim{P.(k + [rj k). I-2

Equation 3 can be written in terms of member loads

(k)=[rinjl2 (k)} + [ri31{~k-l) }11-
Substituting Equation 111-1 into Equation 111-3 gives

+ -[i{Pk)~ [ri j]ý,k-1)1

frcm which Equation 11-2 may be subtracted to yield the following

expression for the errors

{ (k)} ( r3 {5k-1) (k 111-4i

The constant stress and constant strain methods are now distinguished
by the manner in which the e(k-1)" are specified. The Ramberg-Osgood

stress-strain relation, which we may write in the form

EA + 7 Eioi l

will be used in examining both methods.
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Thb nnnlinear strains, in the constant stress method, are given by

*(k-1) 3 LýýI( )i k1

o qk1% I
which, on using Equation Ill-i, may be written in the expanded form

(ak-i) =3 ,(k-l) L,(k-i) n (ki) in-i (k-1)

A similar expansion can be constructed for the 4 k) on introducing

J - (k 14(k-1)) + .qjk

which gives

^(k) 3 (k) F(kl n I n(-l (-i

7 7Ej k~i31 [I00j Ai + n a j aAj a ojAJ+

Substituting the foregoing expression into Equation 111-4, and assuming
small errors in the sense that •<<q and small steps in the loading such

that Aqi<<qi, so that terms containing the products of these quantities

may be dropped, we obtain

(k) 3n ^(k-1) .(k-1) n-li k1) ()
[ri I EjAiJk-l) a OAJ j ~j -;

which may be re-written

(k [k-1F (l) Aj( k) ( ~k-1)

where E give the slope of the stress versus inelastic-strain curve at

the individual element stress levels.
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Instability develops when the errors in the kth step increase over

those in the k-ist step. Clearly, the method would be expected to be
unstable, if any of the inequalities (k) > (k-) were satisfied

directly. A more critical check, however, is the consider the entire
set of (Y as a vector (in n-dimensional space where n is equal to the

number of elements) and apply the condition that the Eucliudean length
of this vector does not increase. Mathematically, this means that for
stability

where the critical condition is defined by using the equality sign.

For simplicity, we consider the case of infinitesimally small steps
in the loading, so that the Aqi terms may be neglected, and further, de-
note

[rj[ ~l Aj LijJ

The critical condition for instability then becomes

'k~~j jt(kl)IBT Sk-1' B k-)}-~

Li j _111-

It is now observed that the eigenvalues of

will all be positive, hence the condition that none of these eigenvalues
be greater than one (which becomes the stability requirement), can be
replaced by the more severe condition that the sum of the eigenvalues
not be greater than one. This latter condition can be assured by re-
quiring that the sum of the squares of all elements of B not be

greater than one, and in addition, that the absolute sum of any row or
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column in B not be greater than one. The critical stress is then

found from the largest of these sums.

In the case of the example truss problem, where Ei E 107 psi,

n = 10, A = 1.0 sq. in., and 00 = ý 105 psi, the sum of the squares

approach, viz.,

n (% l)2 3

3n(cr) ij

yields acr 83,800 psi., while the rows and columns approach gives

0cr =82,900 psi.

Recall that the foregoing development has determined the minimum
value at which instability might occur. It is of interest to compute
a critical value of stress at which instability is strongly assured to
occur. This can be done by returning to the initial notion that in-

(k) (k-1)stability will occur if g )" > k1). This amounts to restricting

attention to the diagonal elements in the Bij matrix The corresponding

critical stress (lowest value) will be given by the largest (in absolute
value) element on the diagonal in the Bij matrix. This corresponds to

the - 0.414 x lOT term in the rij matrix, so that the critical stress

is given by

n-i

SX( .414 x 10T) - 1

which gives a r 93,800 psi. The lowest stress at which instability

would develop, in the case of the example truss problem, would therefore
be expected to occur between 82,900 psi and 93,800 psi.

Note that if only one structural element were inelastic, then the
diagonal term in the rij matrix corresponding to this element would

give the correct critical stress by the latter procedure. Both of the
foregoing values of critical stress have been indicated in Figure 4,
where they are seen to correlate with the experimental (computer) re-
suits. The simple approach of considering only the diagonal elements
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appears to be advantageous in the present problem. With this approach,
it is easy to see that finite values of wi, which make the elements in

the second diagonal matiix in Equation ni-5 less than one, must raise
the stress for instability, which explains the progression of critical
stresses (with increasing load step size) appearing in Figure 4.

Finally, it is noted that certain of the foregoing results, viz.,the value of a based on one diagonal elements alone, can be obtained
cr( ) +(k) ~ ~ a e o (k) (k)

simiply by introducing qi nPaeo qi directly into
Equation, 11-3, and regarding the * as perturbations on the q
The additional results, such as the demonstration of the effects of
finite Aqi, however, are not obtained by this procedure.

In the case of the constant strain method, in addition to the
error quantities in the member loads

{4k)} {~k)} + t(~

we also introduce error quantities for the relaxed loads

The equation defining the relaxed loads, written for the generic ith

member, is

(k) (k) (k), (k) jn-1
+ e (k-1) U, + 3%1 * i

ii EA 1 0,±

which may be written in the following form

1% 4k-1) '') n k1" + i ) I ,i+ 3i%1 + l -*i

~~~~~o i qq3i,~~ ~ l k

) I + k (k)
a01± A + I~k)
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If we now apply the condition of no load reversals, then the terms

k )ijk()jetc., will all produce the same sign (for a given element)

and hence may be cancelled out. Applying the condition that all error

termsg, and load increments 1qi are much smaller than the load magnitude

I "i1, leads to the result

(k (k (k-1)l (k-k
E*i

where ~4-)n-l

The corresponding form of Equation III-4 may now be written by

introducing the exact load-reduction-increments .1 , where

^() k) ^(k)
~rJ qj -~

which leads to

3a k-) (k-1) " k-1)

3a~ kl + (1)+ Ak)n q(k))

Applying, once again, the smallness requirement on the g, and Aqj, yields

F , " 4k Is•.

(k-l k)11-TJ

~(k-1

Ir, j F/ Al)70
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where the absolute value signs have been anitted for simplicity.

The check for the occurrence of instability may now be carried out

in the same manner as for the constant stress method. Thus, considering

only the case of infinitesimal load increments, the corresponding form

of the B matrix, as defined by Equation 111-6, is found to be

A numerical check for the special case of the truss problem shows that

the critical condition of the eigenvalues summing to unity calls for

physically inadmissible values of I(cr)* A simpler demonstration of

this property is provided by the "direct approach" (i.e., setting

(k) 7jk-l) In this case, the critical stress is given by the

lowest value corresponding to the "n" equations obtained by equating

the diagonal elements of

F E(cr)iii 
/(cr)aAj+ Ei/!(crd] F 1i1'

In the. example truss problem, where =E, oi= ao0, and A, = 1.0,

and where the three diagonal elements in the r,, matrix can be denoted

by -CE, where in turn 0%<il, the foregoing matrix equation reduces to

the following simple algebraic equation

+ E

Y(cr)i + 9

The indicated critical values are easily seen to be - qZ and - (2 - C)E,

both of which are physically inadmissible for the Ramberg-Osgood stress-

strain relation. Thus, the constant strain method is indicated to be

free of instability in this case. The problem of accuracy, of course,

is another matter, due to the necessity of working with finite (and pre-

ferably large) load steps. These, apparently, are responsible for the

slow divergence of the conputer results shown in Figure 5.
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APPENIDIX IV.

ROTATION OF AXES OF ANISOTROPY

Let the x and y axes be rotated from the axes of anisotropy in a
positive sense so that from the strain transformation equations we get:

dx = 12d,6 + 2 2. , %2

d2de1+m d e .2 2 +od
dex = - md. + jmdg + 2(12 m2 )dg2

when ,, and m are the usual direction. cosines of the x-axis with respect
to the orthogonal axes.

Similarly from the stress transformation equtations:

2 2

a222m , +2 .+ IV-2

a, 2  - -ma 4ima + (12 =2)

Substituting Equation IV-2 into the appropriate expressions in Equation
12 gives a set of equations as follows:

d = r L•ol- m .(2)a, + .m2 1j

de 2! ~ 2

dell .1 {mc,11 - A j a1 + (M2 of .m2C,)a I-

.. 2 m( a l + o

de (a C. ) + (2 M2)
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Finally substituting Equation IV-3 into Equation IV-1, simplifying and

defining three new coefficients 6, 61 and 62 such that 6 = a -2 - 244

6 1 = (ll + 6) and 62 ' (22 + 8) the appropriate incremental flow

equations became:

61 + M'%2 -8)ax (Ot 12m2 a - 12 m2 62)ay

- Z&(12 6 - m2862)0 T]

d 2 + - ) - 2 2 iVA

-21m(m
2 61 - *2 62) oxyl

dex =L[O4 + Iffm2 6 + 4"6m2
2)a,

P u2(1%,__ -2 8)o - ~(m 261 ,12 )a]

Insertion of Equation IV-2 into 11 gives the expression for effec-
tive stress:

a2 + m -6)ox - 2(a' 2 - 2 )o

+ 614 + 4 6~ 6)a 2 + (3044 + 4fa2326 + Iifm228)a 2  flV..5

6 + o+y

- 1im(f 61 _ m2 6 2 )ox~ay 261mm\-.28)

Nov suppose we make an uniaxial stress-strain test for the
x-direction. The Valid expressions became:

dlot 4~~

a2  2

From the three Equations IV-4~, we obtain equations similar to Equation
15. This equation is augmented under restrictions of equal plastic

work thus:

/ cr7 /a"_ d IV-6
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Assigning the value of unity to one "'V as before we obtain the relative

values of the others. In particular we now obtain a value for (14 61

+ m 62 - 6) which is a function of all, a22' a33 all known and cr4

unknown. Therefore a'4 may be determined.
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APPENDIX V

INELASTIC MATRIX COMPUTER PROGRAM

A. Program Description

This is a brief description of the Grumman inelastic matrix pro-
gram for carrying out elastic-plastic-creep analysis - deck No. 45128 -

Elastic Unloading (follows Hooke 's Law when unloading), including
anisotropy.

This program for elastic-plastic analysis has proved to be quite
adaptable for analytic investigations. It has been modified to include
an option for anisotropic analysis. Previously, the program was modi-
fied to use time-hardening theory, deformation theory, inelastic un-
loading, and constant stress theory (none of which have been retained
in the final program). It was not necessary to do major program re-
visions to accommodate these variations. The program housekeeping is
arranged so that modifications to the manipulation of data will not
affect the housekeeping. Thus the program makes a convenient frame-
work to explore various calculation procedures.

The program is written in Fortran II to run on the Grumman IEM
7094s. These are 2 channel (A and B) machines with 6 drives per
channel; 32,768 words of core storage; on-line card reader; on-line
printer; and printer clock. The program is set to run under Fortran
Monitor control which uses a $JOB card for identification. Input is
on logical tape 7 (A-2), print output on logical tape 6 (A-2) and
punched output on logical tape 5 (B-4) (not used by this program).
Logical tape 8 (B-l) is used for storage of binary output which is
converted to BCD print output in link 6 (at the end of job). The pro-
gram will accept an input data tape on logical tape 9 (A-5) and will
write a binary save tape for restart on logical tape U1 (A-6). These
2 auxiliary tapes are optional for each run (see description of the
control cards,). The Grumman IOU subroutine, as well as the subroutines
for rewinding and unloading a tape (RUN) and for moving to the start
of a designated file (FILTAP) are included, as required in the program,
in column binary form.

The program tape furnished to Wright Patterson Air Force Base
contains all the information needed to duplicate our analysis. It is
in the following sequence:

File 1 - a 1-card BCD label tested by the program'to distinguish
BCD data tape fran binary save tape.

File 2 - BCD card images for matrices SIN AND SIL. See pages 79
and 80 for a description of the matrices and their
format .
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File 3 - BCD card images of Fortran program (6 links), each link.

including binary subroutines previously mentioned.

Multiple ( 6 ) end '.f file marks.

We recommend that all 3 files of this tape be copied for use, then
that file 3 be punched onto Fortran cards. The punching program must
be able to handle mixed-mode cards to accommodate the short binary sub-
routines. This deck of cards, with the proper *I.D. or $JOB card, will
then be in proper form for a Fortran ccmpile and execute, using the
copied tape on drive A-5 (logical 9). The program uses only the data
from files 1 and 2; it will not move into file 3. This 2-file format
for the data tape is generated by the GISMO matrix system in use at
Grummian and elsewhere.

Each link of the program contains the non-IEN subroutines needed
for operation. Standard input-output subroutines etc. will be taken
from the library tape. As a point of information, the program contains
six links numbered consecutively from 1 to 6.

1) Link 1 reads the first control card, and reads all other
decimal input supplied.

2) Link 2 is used only on a restart job. It reads the modified
step table, if provided, and part of the binary input tape.

3) Link 3 is used only on a restart job, and reads the balance
of the binary input tape.

4) Link 4 is the processing link. It does all the calculation,
print control, and writing of binary output on tape B-1 to be
converted to BCD print output by Link 6.

5) Link 5 writee a binary tape for restart, then transfers to
Link 6. If no binary tape is to be written, exit is from
Link 6.

6) Link 6 reads the binary output stored on tape B-1 and converts
it to BCD output on tape A-3 for printing. When tape B-1 has
been completely processed, a message to the operator indicates
that it need not be saved. If, due to machine error or
operator intervention, tape B-1 is not processed into prints
on A-3, but is saved, then Link 6 can be used as a separate
program using B-1 as a data tape and will process B-1 into
prints on A-3. Link 6 does not use any data from CCW4ON. All
necessary clues are stored on B-1.

Sequencing and detaile of the data cards follow. The symbols used
in the program for various items of input data are listed on page 77
and are shown on the sample key-punching sheet page 7P,.
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The data cards are used in the following sequence, immediately
after the *DATA card required by the Monitor:

1. General clue card (FORMAT 1) containing =LU4, NINCLD, NA, JaJUT,
KLUISO, ALPHA, BETA, GAMMA, GNU, and a title or caption.

2. Table of load or time steps desired. Up to ten cards defining
ten steps may be used. Load steps and time steps may be used
in any sequence. The maximum level for each load or time step
may be above or below the previous maximum level of load or
time. The program verifies the algebraic sign of the increment,
and corrects it if necessary. Each card contains four variables
TEMPI, TEMP2, TEMP3, TEMP4 in FORMA 2.

3. Data matrices. These may be provided in any sequence. Each
matrix has a header card in FORMAT 3, one or more data cards
in FORMAT 4, and a blank card to end it. The last input
matrix on the Monitor input tape must be followed by one
added blank card (two total) to trip the program into operation.

In the event that a job is running overtime, and it is desired to
stop the program in a restartable form, mount a blank tape on logical
tape 31 (drive A-6) and set Sense Switch 6 on. This, wi11 write the
contents of memory on A-6 in proper fc--i to continue' the run later.
The program distinguishes between the saved binary tape and a decimal
input tape at starting time. Either is mounted on logical tape 9
(Drive A-5).

Built-in pauses in the program are as follows:

1. Pause 31111 to mount the data input tape at the start of the
program, if all matrices are not on the Monitor input tape
A-2. For this KLU4, in the first data card, should be a "i!" to
"4" indicating the count of decimal matrices on A-5. If A-5
is a binary saved tape from a preceding run, any digit (except
zero)acceptable for XLU4.

2. Pause 1 to mount a blank tape on A-6 to receive memory. This
is reached either with Sense Switch 6, or with a card in the
table of steps punched TAPE in columns 7-10.

B. Symbols and Format of the Data Cards

1. General Clue Card - FORMAT I

Colo. Field Symbol

1 3i Kj14 This gives the number of input matrices
on the aUixliaY input tape (A-5). If
all matrices are on the monitor tape,
leave this blank. If using binary re-
start tape, use a digit. Maximum number
of decimal input matrices on the auxiliary
input tape is 4.
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Colo. Field' Symbol

2-4 13 NINCLD This gives the number of non-increment re-
cycles at each load or time level. The
total cycles at each level is NINCLD + 1.
When printing, the first, tenth, twentieth,
etc., and last cycle of each printable level
will be printed.

5-7 13 NA This sets the frame size for the problem
to be handled. NA is three times the
number of nodes. Maximum value is 165
(55 nodes).

8 3I KLGU7 0, or blank, prints 5 preselected matrices
on cycles indicated by the step table;
1 prints all matrices on cycles indicated
by the step table. 2 prints 5 preselected
matrices on all cycles; 3-9 print all
matrices on all cycles.

9 Il KLUISO 0 indicates an isotropic run
1 indicates an anisotropic run

10 Ix Not used

11-20 E10-3 ALPHA A variable defined by the creep-strain
equation.

21-30 E10.3 BETA A variable defined by the creep-strain
equation.

31-35 F5.2 GAMMA A variable defined by the creep-strain
equation.

36-40 P5.2 GNU Poisson's ratio "nu"

41-5o lOX Not used

51-80 5A6 TA-TE Any 30 characters of alpha-numeric text
to be printed as a heading for identifica-
tion purposes.

2. Table of Steps (limited to ten entries) - FORMAT 2

Cols. Field

1-6 6X Not used

7-10 Ak LOAD indicates a load step, TIM indicates a
time step, TAPE indicates write memory on a
save-tape on drive A-6 (logical #11) then exit.
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Cola. Field

FINS or blank indicates end of table (this may
be the llth card in the table).

11-20 ElO.6 Upper limit of step in pounds or hours

21-30 ElO.1 Interval or increment for calculation

31i-40 Eio.I Interval or increment for print output. Prints
are generated on tape A-3 for the current cycle
when the current load or time level is an inte-
gral multiple of the print interval. If the
print interval is left blank, no prints are
generated for cycles in this step. If print
interval is very small compared to the, current
level, then numeric problems sometimes occur
in the print control subroutine (OUTMPU), and
it may be necessary to re-run with the every-
cycle print control "2" or "3' for KLU7 punched
in the first control card.

41-80 Ignored

3. Data Matrices - Header Card - FOKAT 3

Cola. Field

1-6 6X Not used

7-iO 4X Not used. We use the letters MTRX for cam-
patibility with the GIS0 Matrix System, which
reads and writes matrices In this format.

n ilx* Not used

12-17 A6 This is the identification nane for the input
matrices and must correspond exactly with one
of.the following names:

bbbSIM Matrix of stresses for applied loads
maximum size 165xi

bbbSLT Matrix of stresses for member strains
maximum size 165x165

bTZ.MIN Table of stress values llxl.

b!YEPSI Table of strain values llxl

These two matrices define the stress-
strain curve as a series of chords.
The data is entered in this format
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merely to conform to the format of the
SD4-SIJ matrices which were generated
using the GISM Matrix System. Note
that the first value in both TSIGN an
TEPSN must be zero to avoid upsetting

the interpolation procedure.

TALF ?12

TALF 23 a23 Basic anisotropic parameters

llxl
TALF 31 c, 1

TALF 44

18 ix Not used

19-21 13 Number of rows in this matrix

22-24 13 Number of columns in this matrix

25-32 8X Not used

33 fl The digit 3

34-80 Not used

4. Data Matrices - Data Cards - FOI4AT 4

Cols. Field

1 IX Not used

2-4 13 Row index for the first element

5-7 73 Column index for the first element

8-23 E16.8 The first element on this card

24 IX Not used

25-27 13 Row index for the second element

28-30 13 Column index for the second element

31-46 z16.8 The second element on this card

4T lX Not used

48-50 13 Row index for the third element

51-53 13 Column index for the third element

so



Colo. Field

54-69. E16.8 The third element on this card

70-80 Not used

The last card of a matrix must be completely blank (tested in Col.
2-4). iThe last matrix on the Monitor input tape 7 (drive A-2) must be
followed by one added blank c9.rd (two total) to trip the program into
operation.

The input mtrices on the Monitor tape may be in any sequence as
long as each matrix starts with a header card, has all its data cards
next, and ends with a blank card.

C. Anisotropic Parameter Matrices

If a run is indicated as isotropic in the first control card
(KUISO in Col. 9 is zero or blank) the program will read in the
anisotropic parameters, if provided; then it will replace them with the
built-in parameters for the isotropic condition. If a run is indicated
as anisotropic in the first control card (KWISO is 1 to 9), then one
each of the anisotropic parameter matrices must be provided or the pro-
gram will terminate on an error.

D. Restart Procedure

If the run being set up is a restart, the input deck can be in
several forms. The first control card must have a digit in KLU4 so
that the program will read tape A-5; NINCLD and KLU7 are read fram this
card. The other factors are carried from the previous run. The con-
tinuation of an isotropic run will always be isotropic, and conversely,
regardless of the clue provided (KLUISO).

The table of steps may be read in again (modified) if the previous
run is stopped with sense switch 6, or it may be retained and continued
fram the previous run. However, if the previous run is stored on tape
A-6 by using a TAPE card in the step table, then a new step table must
be read in.

In either case, the last data card on a restart job must be FINS
or blank in columns 7-10. This means a restart data deck will have a
minimum of two cards (clue card and a blank), or a maximum of 12 cards
(clue card, 10 step cards and a FINS or blank).

E. Time Estimates

For time estimates, allow 3.5 minutes to compile the Fortran,
1.5 minutes to read the input tape, 2.0 seconds per cycle printed, and
100 to i10 cycles of calculation per minute. Each printed cycle writes
approximately 3 feet of print tape (55 node problems).
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• XEQ b~

• CHAIN(l,3) UU02
* LIS78 0003
451 iZ GRUMMAN AIRCRAFT ENGINLERkN4 CUkP. DECK NO. 45128 LINK I

C MATRIX ANALYSISFOR IsorkupI.L UK ANISOTROPIC IN[ELAiTIC STRUCTURES (1005
C IN THE PLASTIC AND CREEP KtiMlk CO0b
C 000D
C p008
C THIS PROGRAM WRITTEN FOR AIK I-UKLL CONTRACT AF 33(6L51-2260 0009
C 0o10
C * * • TABLE UF SYVdULS USED *** 01)Dl
C ... Ol
C **ARRAYS (1013
C AL1212 - MATRIX OF ANISUTIUPIC PARAMETERS FOR EACH NUDE 0014
C AL1223 - MATRIX OF ANISOrKuPit. PARAMETERS FOR EACH NUDE 0015
C AL231 - MATRIX OF ANISOTRUPIc PARAMETERS FOR EACH NUDE 0016
C ALFA44 - MATRIX OF ANISUTRUP& L PARAMETERS FOR FACH NUDE Oil?

C DELEPK - MATRIX OF NUOE" ýTKAiN -UAmiE'S"B-/DLTA EPSILON)' 0015
C FOR THE X AND Y oLRILTIuNSp AND THE SHEAR STRAIN CHANGE 0019
C DELEPN - MATRIX OF EFFECTIVE INLLASJIC STRAIN CHANGES 0020
C EPBARN - MATRIX OF EFFECTIVE INLLA411C STRAINS (EPSILON 3AR iUB N) 0021
C FOR K-TH CYCLE 0027
C EPBARP - MATRIX OF EFFECTIVE INELASTIC STRAINS (EPSILON BAR SUB N) 0023
C FOR K-i CYCLE (HE-PREtEUiG CYCE) 0024
C EPCNK - MATRIX OF EFFECTIVE uAEtP STRAINS FOR THIS CYCLE 0025
C EPCNP - MATRIX OF EFFECIIVE LKEEP STRAINS FUR PREVIOUS CYCLE 002b
C EPSUK - MATRIX OF NUDE PLASIIL STkAINS fEPSILUN SUB U) FUR THE 0027
C Xt Y AND SHEAR STRAINSt'FUR THE K-TH CYCLE 0028
C KPMTM - TABLE OFCONTROL CLUES IUUAD STEP. TIME STEP• •RITI- SAVE 0029
C TAPE) READ-IN LUNTKUL INFORMATION USED WITH PMTM 0030
C PMTM - TABLE OF LOAD INCAtMENTS9 PRINT CONTROL INCREMENTS AND 0031
C UPPER LOAD LEVEL PER STEP (CONTROL INFORMATION) 0032
C SGBARM - MATRIX OF EFFECTIVE NuDE STRESSES FOR LAST CYCLE THAT 0033
C SHOWED AN INCREASE AT A PARTICULAR NODE 0034
C SGBARN - MATRIX OF EFFECTIVE NuOE STRESSES FOR CURRENT CYCLE 0035
C SGBARP -, MATRIX OF EFFECTIVE-NuDE sTRESSES FUR--PR-EVIS CYCLE C'03b
C SIGUK - MATRIX OF NODE STRESTKS (SIGMA SUB U) FOR K-TH CYCLE 0137
C SIJ - MATRIX OF STRESSES f0R MEMdER STRAINS 0038
C SIm - MATRIX OF STRESSES PUR APPLIED LOADS 0039
C TALF12 - MATRIX OF ANISOTRLJPIL PARAMETERS (INPUT DATA) 0040
C TALF23 - MATRIX OF ANIS.OROPIC PARAMETERS tINPUT DATA) . .0041
C TALF3I - MATRIX OF ANISOIROPIL PARAMETERS IINPUT DATA) 0042
C TALF44 - MATRIX OF ANISOIRUPIC PARAMETERS (INPUT DATA) 0043

C TEFSTN - MATRIX OF TOTAL kFFiZTIVEST-RAINS 0044
C TEPSN - TABLE OF STRAIN VALUES dEFINING THE STRESS-STRAIN CURVE 0045
C TINKI - MATRIX OF REFERENCE CAEEP TIMES FOR ALL NODES 0046
C TOTEPS - MATRIX OF TOTAL NUOE STRAINS 0047
C TSIGN - TABLE OF STRESS LEVELS JEFINING [HE STRESS-STRA` CURVE 0048
C 0049
C * * VARIABLES AND CLUES • 0050
C ALPHA - PARAMETER USED IN THE CREEP EQUATIONS 0051
C BETA - PARAMETER USED IN THE CREEP EQUATIONS 0052

C E - MODULUS OF ELASTICITY 0053
C GAMMA - PARAMETER USED IN THE CI;EEP EQUATIONS 0054
C GNU - POISSONS RATIO 0055
. K THE CYCLE COUNTER .... 0056
C KERRSW.- CLUE USED FOR TEMPORARY INDICATOR BETWEEN LINKS 0057

C KLU4 - CLUE INDICATING 1OTAL CUUNT OF MATRICES ON AUXILIARY TAPt- 0058C. KLU5 - CLUE INDICATING MATRI STILL NOT READ FRUAUXL AP 0059.

93.



C KLU6 - CLUE FOR PRINT tuNIhua "iWiCH CYCLES) 006U
C KLU8 - CLUE FOR PRINT I;lJiTlUL IwHiCH MATRICES) 0361
C KLUISO - CLUE FUR ISOTRu1i6 oK AsI¶41UTROPIC RUN IINPUT). Ol2
C KSET - CLUE FUR THE LOAo UK TIME. LEVEL LURRENTLY IN USE 0063
C NA - 3 TIMES THE NOUt 6UUNr IrIPUT) 0064
C NC - NUMBER OF NUDES " flUb5
C NINCLU - NUMBER OF NUN-I oKtM~it LY6LES AT EACH LUAU LEVEL (INPUI)I U
C PM -. CURRENT LOAD LEVEL ouo, I
C SHRMOO - SHEAR MODULUS fl0b8

C TIME - CURRENT TIME LEVtL 0069
C 0070
C OUTPUT SUBROUTINE TO CumTKuL" eKINrING AT VARYING LOAD LEVELS 0U71
C 0072
C 0073
C ELASTIC UNLOADING (FOLLO•S.HUu.(S LAW WHEN UNLOAUING) 0074

COMMON TEFSTN, TOTEPS 007%
COMMON KLU4, KLU5, VLUa, I LU80 NA, NC, K 0076
COMMON KERRSW, NINCLO, K$tIt PM, Et GNU, SHRMOU 0071
COMMON ALPHA, BETA, 4AMMA,. TIME., KLUISO . .0010
COMMON PRTM, KPMTM# 41Mv SIJ, TSIGN, TEPSN 0079
COMMON TALF12, TALF23p IALF319 TALF44 0080
COMMON AL1212, AL1223, ALLZ Le ALFA44 0081
DIMENSION TALFI2(L),TALh-•{aLlL)TALF31I11),TALF44(11) 0082
DIMENSION ALl212(551,ALIZZjt55)IALiZ31155),ALFA44(55) 0083
EQUIVALENCE {IIMKItTEFSTII0,(Tu!.[P-tE.EPK) .. 0084

C THESE FOUR ARRAYS ARE EQUIVALENLE) ID SAVE CORE SPACE. 0085
DIMENSION TIMKII55),TEFSINti5)tTuIEPSI165),DELEPK(165I 0086
DIMENSION PMTM(LO,3),KPMTMiiU)OSIMI(65)tSIJE 65,165),TSIGN 11) 0087
DIMENSION TEPSNE11) 0388
DIMENSION BLI5),ID(9) NRI3JoNU(31 ,L(3) 0089
DIMENSIONPSTEP(3) 0090
EUUIVALENCE I )A-1A'I-A3 it'A 4-11 "1D (5 0091
1,AU5 1v(IU16 AD6)(ID7)tAU 7JvIL U JAD8.),109•19)A 0) 0092

8 ADI x 606060623144 0093
B A02 - 606060623141 0094
B A03 = 606362312745 0095
B A04 6 0Q6325476245 . 0096
B AD5 .632143260102 0097
B A06 - 632143260203 0098
B AD7 - 632143260301 0099
a £08 A 632143260404 0100
8 A09 606060606060 0101
9 BLII) 434621246060 0102
8 BL(2) 33144256060 0103
B BL(3) - 632147256060 0104
B BL(4i a 263145626060 0105
a BL(5) * 606060606060 0106

KERRSW = 1 0107
INTAPE - 7 O0O8
KLU " -60 0109
KLU6 * 0 0110
KLU8 ioooo 0111
KLUALF a 0 0112
PSTEP() -0'0 0113
PSTEP(2) _ 0.0 .o14
PSTEPF3) - 0.0 -Oil
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00 51 J221,910 0116
51 KPMTMIJ22) = 0 0117

LROW = 0 0118
READ INPUT TAPE 7,ItKLU4 NINCLUNAvKLU7 KLUISOALPHAt8ETA.GAMMA# 0119

IGNUtTAT8,TLTDTE 0120
WRITE OUTPUT TAPE 6t21,TAtrtTLvTdITE 0121

C KLU7 (INPUT) n 0 TO PRINT ePt-SELECIED MATRICES UN SELELTED CYCLES 0122
C KLUT (INPUT) -I TO PRINT ALL 14AIKILES ON SELECTED-CYCL-ES" 0123
C KLU7 (INPUT) - 2 TO PRINT PL-SkLtLTEO MATRICES UN ALL CYCLES 0124
C KLU7 (INPUT) = 3-9 TO PRINT ALL MATRICES O ALL CYCLES 0125

IF(KLU7)384*3864381 0126
381 IF(KLU7-113839383,382 0127
382 KLU6 1 1 0128

C KLU6 IOUTPUT)-I TO PRINT tALH -- YaLE- 0 TO PRINT SELECTED CYCLES 0i29
IFIKLU7-2)384,384,383 0130

383 KLU8 a 0 0131
C KLU8 (OUTPUT) a 0 TO PRINI ALL MATKLCES 0132
C KLU8 (OUTPUT) - 10000 TO PRINT bLECTED MATRICES 0133

384 CONTINUE 0134
IF(KLU-4-302,302,3.1 0135

301 PRINT 17 o13b
PAUSE 11111 0137

C TEST INPUT TAPE TO OISTINtoUISH 61SMU BCD FROM INELASTIC PKOG. SAVE 0138
READ INPUT TAPE 9131,LTAPk 0139
REWIND 9 01.0
SUBROUTINE FILTAP POSITIUNz A TAPi' AT THE FIRST RECORD OF ANY FILE O1t1
CALL FILTAP(9,2) 0142
IF(LTAPE-21)3439343,344 0143

344 CONTINUE 0144
C SAVED TAPE FROM PREVIOUS KUN' UF INELASTIC PLATE 0145
C THIS RUN IS A CONTINUATIUN...... ......... ..... 0146

CALL CHAIN 12,31 014W
343 CONTINUE 0148

C GISMO FORMAT BCD TAPE 0149
C THIS RUN IS A NEW ONE 0150

KLUS = KLU4 0151
INTAPE - 9 0152

302 CONTINUE 0153
C KLUISO - 0 FOR ISOTROPi1 RUN O154
C KLUISO = I FOR ANISOTRUPIL RUN 0155

WRITE OUTPUT TAPE 6,9 0156
IF(KLUISO)380,380,379 0157

379 CONTINUE ... ... ... ... . 0158
WRITE OUTPUT TAPE 6,10 0159

380 CONTINUE 0160
52 READ INPUT TAPE 7v2tTEMP1t|kMP2@IcTP3,TEMP4 0161

LROW - LROM + 1 0162
DO 53 J22-1,5 0163

B IF (TEMPI* (-61.1J22))f)5395L3.--..... . 0164
53 CONTINUE 0165

C BAD CONTROL CARD 0166
WRITE OUTPUT TAPE 6,12,LUJW .0167
WRITE OUTPUT TAPE 6v2vTEMPLTEMP2vJEMP3tTEMP4 0168
CALL EXIT 0169

54 GO T0IS 50550i55,.,60)t-2. OiTO

55 IFILROW-IO)5bt56,53 0171
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0172

C KPKMIN N I FOR A LUAU 4itp 
07

C KPAT1M( N I a 2 F0IR A Tlist :0 AE AP 0114

K PMTH ( N ) a 3 TO DUMP ML'AijKY Irdlo A SAV TAPE

IL PMTM (Nil) a UPPER LIMIT Utý 41LP 017b

C PMTM (Nil) - INT ERVAL iIN61401LA I I FUR CALCULATION0 
7

C PMTM (N*3) INTERVAL 1IN6#k:Ar1cI11 FOJR PRINT OUUPUT 
0177

tib K~PMT#4(LROW1 x J22 
0178

PMTN(LRCW9li2 TEMP2 
0L19

TEMPS 2 TEMP2-PS1kpj22) 
0 180

PMTM(LROW*21I SIGNF( r itEAPPIMI0 ~ 0181

PSTEP(J22) x TEMP2 
0182

IF1PMTH1LR0OZI )57,63,57 
0183

u3 GO 70 499 59 995,57)tJ22, 
0184

51 CONTINUE 

0185

PMTM(LR0W93)% TEMP4 
018Sb

GO TO SZ 
0187

ibo CONTINUE 

0188

DO 361 J23 -1910 
0189

It.(KPMTM(J23))36
1 ,361t3

6 W 
U190

321FIKPMTM(J23)-4)-3639
36lt3 u1 

0192

3a3 J24 . KPNTMIJ23) 
19

GO TO (3 64 *3 66 368)9J24 
0193

3b4 WRITE OUTPUT TAPE 6,22 1 PM1M1J43,mflPMTM1J23vl1 
0194

[FPNTMIJ239
3i I361,361,3o!ý 

0195

365 WRITE OUTPUT TAPE 6,23#P141M14443124)...09

GO TO 361 
01,97

166 WRITE OUTPUT TAPE 
('4PttlJ1,)P4T4J3L 198

IFtPMTM(J23,3)136lv361930 

019

3*7 WRITE OUTPUT TAPE 62,MAJ3.101P00
GO TO 36L1ý0

368 WRITE OUTPUT TAPE 6921 
0702

361 CONTINUE 

0.103

WRITE OUTPUT TAPE 6928vN1t"-L0 
0204

WRITE OUTPUT TAPE 6*5AP^6i#AM 
0205

LF(GNUI86t87#
87  

0206

86 GNU = .
0207

81 CONTINUE 
... . . ..

20

IF(NA1999,'1
1 92  

00

91 NA r 16S 
0210

92 IF(NA-165193v939
9 99  

0i11

93 CONTINUE 

0212

96 IF(MA-3IMNA/3)99#9"
7 09 9  

01

97 NC -NA/3 .
.. -0214

IF(KLU4)30
4 9'id41303 

0215

303 IF(KLU4-41306,3O
6 ,994  

0217

3U6 CONTINUE 

0217

tNTAPE -s 
0219

KLUS =KLU5 - 101
108 READ INPUT TAPE INTAPE, -

_M~N~S#CLvpOR 0220

00 Ito S.NC21'i4FDR 
0221

IFINAME-IDI 1211)11093119110 
0222

110 CONTINUE 

0223

C, SAO INPUT - MATRIX NAME AUf M-.LLPTA8LE 
0224

GO To 991 
0225

311 GO TO 
.L

3 z 3 3 3 43p3e~aPI1I~ 
- -0226

321 00 331 11 =1,165 
0221
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331 SIMIIl) - 0.0 ........ 0228
WRITE OUTPUT TAPE 6*20vKAMCNXM&JWthOLSINTAPE 0229
GU TO 111 0230

322 00 332 11 =19165 0231
DO 332 12 -1,165 0232

332 SIJ(I1,12) - 0.0 0233
GO TO 111 0234

323 0O 333 11 ,1l 0235
333 TSIGN(II) = 0.0 0236

GO TO 111 . 0237
324 DO 334 11 l 1 ... 0238
334 TEPSN(I1) a 0.0 0239

GO TO 111 0240
325L0 335 II - lol ""0241
335 TALF1ZI(1)= 0.0 0242

KLUALF = KLUALF + 1 0243
GO TO 111 0244

326 00 336 11 m 1,11 0245
336 TALF23(I11) 0.0 0246

KLUALF I KLUALF + 2 0247
GO TO III 0248

327 DO 337 11 = loll 0249
337 TALF31(11)z 0.0 0250

KLUALF = KLUALF + 4 0251
GO TO 111 0252

328 00 338 11 1 1,11 0253
338 TALF44(1113 0.0 0254

KLUALF - KLUALF-÷8 0255
GO TO 111 0256

111 GO TO L112,112,112,112,11iZ1i2,i12,L12ti501,121 3257
112 READ INPUT TAPE INTAPE,4 (Nat lZ2) ND(I22),EL(I22J)122-1,3).. 0258

iF(NRII))996,109,113 . 0259
109 IFIKLU5)308,308,306 0260
308 INTAPE = 7 0261

GO TO 108 0262
304 GO TO 308 0263
113 GO TO (121t122,125t •,26_20L020.e12O3t24,150 I21 .... 4........

C READ IN ARRAY SIGMA-IN 0265
121 MROW NR1). 0266

WRITE OUTPUT TAPE 6,4,(NiiU2iL)4122'hiELtI223)I22=1,3) 0267
SIN (MIIOW) .ELM 0268
IFIEL(2) 1127,128,127 0269

127 MROW = NR2I) 0270
SIM |MROW) - ELM2) 0271

128 IF(EL(3I1gI29v-L2dt2 -•.. . 0272
129 MROW = NRi3m 0273

SIN INROW) - EL13) 0274
GO TO 112 0275

C READ IN ARRAY SIGMA-IJ 0276
122 MROW a NRII) 0277

HCOL. a N.. . . .............. 0278

SIJ iMROWMCOL) = EL(i ) 0279
IF(ELZ1).130,1319130 0280

130 HROW - NRI2) 0281
MCOL = ND(21 . .0282

S15 IMROWMCOLI - ELI12 0283

-97k. . . . . . . . . . . . . . . . . . . .. . . . . . . .

I

1.• .
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131 IF(ELf3))L3Z,112,132 0284
132 MROW a NR13) 0!185

MCOL aNOM3 0286
Sli IMROWtMCOLI EL(3) 02d 7
GO TO 112 0288

C REAL) IN ARRAY TSIGN ITAB~t Ul- )1,IvMA B3AR N) CZ89
125 MROW a NRII) 0290

TSIGNINROW) a ELMI 0291
IFlEL(2) 1139,140,139 0292

139 MROW - NR(2) 0293
TSIGNIMROW~) aELM2 0294

140 IF(ELt3J) 141,112,141 02915
141 MROW = NRM3 0296

TSIGN1MROWI a EL13) 0Ž97
GO TO 112 0?98

C READ) IN ARRAY TEPSN ITAdLL U.* EPSLLUN BAR N) 0299
126 MROW - NRMI 0300

TEPSNINROWI a ELMl 0101
IF(EL(21jI.42tt43,142 -00

14*2 MROW - NRI2) 0303
TEPSN(MROW) - ELM2 0304

.13IF(EL 13))144*112,144 0305
144 MROW a NRI3 0306

TEPSN(MRO.4I a ELM3 0307
GO TO 112 - 0308

C READ IN ALPHA TABLES 0309
201 MROW -NRMI 0310

TALFlZINRUW) a ELMl 0311
IF(EL12) 12219222,221 0312

221 MRUW - NR(2) 0313
TALF12(MROW) a EL121 0314

222 IF(EL(3))223,1129223 0315
223 MROW = NRM3 0316

TALF12IP4ROW) - ELM3 0317
GO TO 112 0318

202 MROW a NRMI 0319
TALF23(?4ROW) a ELMl 0320
IF( ELM2 24,2,2 0321

224 MR0W - NR(2) 0322
TALF23(MROW) a ELiZI.. 0323

225 IF(fiL(3)1226ql12,226 0324
226 MROW -NR(3) 0325

TALF23INMI)W) aEL13) _ 0326
GO TO 112 0327

203 MROW aNRI1) 0328
TALF3I(MROW) -'ELMI 0329
IF(ELIZI )22792289227 0330

227 MRf'W = NR(2) .0331

TALF31INROW) aELMZ -.-.. . . . . 0332.
228 IF(ELf3))2ii9,11v2'29 0333
229 MROW a NR(3 0334

TALF31(MR0UW EL131 0335
GO TO 112 0336

204 MROW -NRM1 033?
TALF44(MROWI ELMi. 0338
IF(EL(2))Z3O,23l,230 0339



230 -- _______1 0340~
TAF4MO) EL121 0341

231 IFIEL(3112329112,232 0342
232 MROW z NRI31 0343

TALF44(MRUW) =EL(31 0344
GO TO 112 0345

150 CONTINUE _____0346

IFIKLEUIS-i 65)ýý,165,161I 0347
161 IF(KLUALIF-15)16?91679162 0348
162 WRITE OUTPUT TAPE 6932,KLUALI- 0349

IF(KLU4) 164,164,163 0350
C SUBROUTINE RUN kEWINUS ANu Uer4LuAa.J, THE DESIGNATEU TAPE 0351

163 CALL RUN(91 ________ ___ 0352
164 CALL EXIT 05
165 00 166 1 -1.11 05

TALFiZ(l1- 0.5 0355
TALF23(ils 0.5 0356
TALF31(I)m 0.5 0357

166 TALF44I I)u 1.0 035a
167 CONTI NUE 0359

E = TSIGN(2)/TEPSN(2) 0360
81 SHRMOO a EI(2.*11.+GNUI) 0361

WRITE OUTPUT TAPE 695vESHA4NUD,6bU 0362
WRITE OUTPUT TAPE 6,6 0363
DO 149. Ila-ljil 0364

149 WRITE OUTPUT TAPE 6,7vI#IUS1vNl III oEPSNII1)vTALFIZII 119TALF?31 111 0365
iTALF31(11),TALF44I Iii 0366
K - 0 0367
PM 0 .0 0368
IF(KLU4) 152,152,209 0369

C SUBROUTINE RUN REWINDS ANU UNLUAUS THE DESIGNATED TAPE 6 370
209 CALL RUN(9) 0371
151 PRINT 19 0372
152 CALL CHAIN(4,31 0373
994 WRITE OUTPUT TAPE 6,189KLU4t 0374

CALL EXIT 0375
995 WRITE OUTPUT TAPE 6,16*LiK0W 0376

CALL EXITl 0377
996 CONTINUE 0378

WRITE OUTPUT TAPE 6,1p4tNAMiz 0379
WRITE OUTPUT TAPE 694,IN.R4La),#NU(112Z),EL(I122I.I22=1,3I 0380
CALL EXIT 0381

99? CONTINUE___ 0382
WRI EOTUTAE613 AL0383
CAL.L EXIT 0384

999 WRITE OUTPUT TAPE 6v11,NA 0385
CALL EXIT 03b66

I FURMATIII,2l3,211,IX.2El0.3a2(sa.,DLOX,5A6I 0387
2 FORMATf6X#A4,EI0.6,E10.1,r1i).LJ _______0388

3 FORMAT(L1XiA6v1X92I398XIJ 0389
*4 FORMAT(3(IX9213,.E16.8) 1 0390

5 FORMAT(26HI MODULUS OF ELASMLITV v Flle0v4H PSl,6XI6HSH'EAR MUOD 0391
ILUS 0 tFII.0p4H PSI ,6X95HNU a PFO.31 0392,

6 FORMAT141HO TABLE OF VALUE!S FiJ.( T~iit-StUAIN CURVE ~ 0393
ISX.129HP61NT STRESS LEVEL ýbiKA1NtX,8HALtHA 12j7j?!8HALPF4A_23,IA 039%
1.8HALPHA 31,?X,SHALPHA 44/I6Avit1PS1,9Xv7HNeN/IN*/l) 0395

.99



7 4,396
9 FURMAT(//19H THIS ISTowels. KullUbtS ELASTIC UNLUAUING (HOUiKES L 0391
LAW) wITH STRAIN HARDENINvi) 0198

10 FORMATf1H4,5X*2HAN) 0.39.9
11 FORMAT11ION ERROR NA=14) 0400
12 I-URMAT(2brl ERROR- INCREMcaii i.AK&, ou.tI3,5H N.G.) 0401
L3 FORMAT414H ERROR-MATRIX tAo) 0402
14, FORMATIITH ERRO4-.NFG.INDLX Ao) 0401
1b FURMAT133H tRROR-NG LNEfVL1oLEtN CARO,[3) 0404
It FORMAT1151HO PAUSE 11111 Iu AuN1 IwPUT DATA 1APt- UN DRIVE A-III 0405
1d FORMAT(TH tERRUR-15,18tl INPUT( MATaKCtS NG) 0400
19 FORMAT1tlH DEMOUNT ANO) SAVt. TMft A-ý. DATA HAS i3EEN REA) JNTU ME.'U 0407

IRY. THE PROGRAM CONTINUE4 [U KUNJi'4jd 0408
2U FORMAT( //5X, VHMATKIX qAoIA#ka~drtl KuWS X t13t11!H COLUMiNS FkUM TApt' 04044

1 ,12) 0410
21 FORMAT~kHIZ9Xt5A6) 0411
22 FORMAT t5X# 1bHLOAI) INCRtMunifS t-9ý,ePLIH POUNDS TO ,FIO.2,711 PJUNDS) 0412
23 FURMATIIH+9bLX9l9HPRINT u0IPUI tVtAY ,F9.2,7H POUONLS) 0413
24 FO*&MAT15X,16HTIME INCREMt~ii~b gry.49iLti HOURS TO ,FIO.4,hH HOURS) (0414
25 FORMAT(/ 9H ALPHA = qELO..i,)Aq7HL~tIA v tE10.39,3XqWiLAMMiu ,E0o.3) 0415
*26 FLURMATf1H*,61X,1q9HPRINT uuTpuT rtVRY ,F9.4,aH HIOURS) 0416
27 FURMAT(5X#35HSTORE MEMORY uiv IAPE A-6, THEN ýXITJ 0417
23 FURMATt//5X913q48,I NUN-Ii .RKrtftwT LYLLES AT EACH LUAD UR TIM4E LEVEL 0418

1) 0419
ýSI FtJRMAT(LOX,12) 02
32 FORMAT115X912,65M ALPHA TjdLES Wtt kEAD Ili Ul- 4 REQUIREO. L14ECK YU (0421

LUR INPUT CARUS.) 0422
ENDII,1,0,0, 0,, 1, 1,0, 1Utu, Ulu,0)

* CtIAIN112011 0424
* LISTS 0425



".#51282. GRUMMAN AIRCRAFT ENGINakKlrmi CuI4P. DECK NO. 451.28 LINK 2 ____

* C451281 MATRIX ANALYSIS OF INtLA.*IIC PLATE -LINK 2 - WITH CREEP 0421
* C THS IN READ tNASV I~A AE-FRTPR 0428

*COMMON TEFSTNt TOTkPS 0429
*CommoM KLU4, KLU5, KLJbt KLU8, NA, NCI K 0430

COMMON KERRSW, NINCID, Kb~I, PM, Ev GNU, SHRMOL) 0431
-COMMON ALPHA, BETA, 4AMi4A, IIME, KIUISO Ojt3 2
.COMMON PMTM,_ KPMTM, ~I, Sli, TSIGN, TEPSN 0433
COMMON TALO]Iz, TiLF23, TALýiI, IALF44 0434

* COMMON ALLZ212 AL12239 AL1131i, ALFA44 Q0,35
DIMENSION TALF124 11) ,TALitj4111 ,IALI-3l( III TALIt44(ill 0436
DIMENSION AL1.212I55),ALI,2ý155),AL1,431(S5),ALFA44I55I 0437
COMMON SIGUK, EPSUK 03
EQUIVALENCE (TIMK1,TEFSTh)tlTUItPiUELEPK) 0439

* C THESEFOUR ARAY AREF EQCLNOUr ~~ RE PACE. 0440
DIMENSION TIMK1(55),TEFSTNI5 ,tTuIEPS(165),tUtLEPKf 165) 0441
DIMENSION PMTMI 1O,3 ,PKPMTM L.U) ,-LM(L65),SIJu16'j,165),TSIGNt 11) 0442
DIMENSION TEPSN(II1hSIGUKlku5J#E0SUK(I65) nl443
DIMENSION B1(5) 0444

*DIMENSION PSTEP131 0445
READ TAPE 9-,KLU4,KLUS. LACi. LC-t,NA-,NiC-,,'ikERSw, --- L'C,-KS'ET,-'P-M.E. 0446

* 1GUSRM0UALPABTA,~MMA liMKLISO0447
C KLU6 = I WILL PRINT EVERY 6YLLE, U WILL PRINT ONLY SELECTED CYCLES 044$

* C KLUS -3~ WILL PRINT ALL NA[KIk~t, NUN-ZERO PRI1ITS SELECTED MATRICE; 0449
C NINCLO (NON-INCREMENT CY6LES AT LALHi LOAD LEVEL) ACCEPTED FROM 0450
C INPUT CUNTROL CARD _____________0451

WRitE O-UTPUT TAPE 6,9 0- 452
IF(KLUISOI38O,3809379 0453

3'7'9CONTINUE 0454
WRITE OUTPUT TAPE 6,10 0455

380 CONTINUE 045~6
NCLU = 1 _____0457

KERRSW =2........~.---~-____ --.-- 045i~
* B B~Ll) 2434621246060 0459
a 81(2) 633144256060 0460
a 61(3) 2632147256060 . . 0461
B BL(41 263145626060 01962
B 81(5) 2 606060606060 ___ 0463

Db 00 51 142 2 1,10 04C)4
51 KPMTM(I42) - 0 04V65

PSTEP(1) a 0.0 046b
PSTEP(I2) = 0.0 0467
PSTEPf3J u.0.0 0468
LROW -20 0469_ -

*52 READibNiP~uf TAkPE f,'7. i 'EMliý, IEM-P2 TOMPT,_T E MP4 0470
LRUW -LROW + 1 0471
00 53 J22=1,5 0472

a IF(TEMP1*(-BLtJ22)J35395*#.j3 0473
53 CONTINUE 0474

C BAD CONTROL CARD ________07

WRITE OUTPUTT TAPE 6,12.Lxuw 0476
WRITE OUTPU.T TAP.E.6,92,T.EMPP1TEMP2,?TEMP3,TEMP4 * 0477

* CALL EXIT 04 7d
54 GO TO(55#55955960,601* 'J2Z 0479
55 IF(LROW-101569t4;,53 0480

C KPMTM( N 1 21 FOR A LUAU STEP _ ___0481
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C KPMTMI N ) a 2 FUR A TIMt P 0482
C KPMTMI N ) a 3 TU OUMP MtMLKY INTu A SAVE TAPE 0483
SPMTM IN,1) a UPPER LIMIT oji- SIP 0484
c PMTM (N#2) a INTERVAL (Ic4KtA4I'dT) IUR CALCULATIUN 0485
C PMTM (N#3) a INTERVAL lIi KEtPINI) FuR PRINT UUTPUT 0486

56 KPMTM(LKOW) J22 0487
NCLU a 2 0488
KSET = I C4b9
PMTMILRUWtiU TEMP2 0"90
TEMPS a TEMP2-PSIEP(JZ2i 0491
PMTM(LROW92)a SIGNF(TEMP3tIkMP5h 0492
SPSTEPIJ22) u TEMP2 0493
IF(PMTMfLRJWt2))E57v6357 0494

63 GO TO (9959995057),J22 0495
57 CUNTINUE 0496

PMTM(LROW,3)2 TEMP4 0491
GO TO 52 0498

60 CONTINUE 0499
GO TO (61962),NCLU ObUO

62 CONTINUE 0501
READ TAPE 99JUNK 0502
READ TAPE 9,JUNK 1503
GO TO 64 0504

61 CONrINUE 0505
READ TAPE 9,PM-M 0506
READ TAPE 9,KPMTM 0507

64 CONTINUE 0508
WRITE OUTPUT TAPE 691 0509
DO 361 J23 - 1,10 0510
IF(KPMTM(J23)1361,361,362 0511

3o2 IF(KPMTM(J23)-4)363,361#jol 0512
363 J24 - KPMTMtJ23) 0513

GO TO 136493669368),J24 0514
364 WRITE OUTPUT TAPE 6,22,PMTM(JZ,ýsJtPMTM(J23,1) 0515

IFIPMTMiJ23,3))361,361,3ot 051b
365 WRITE OUTPUT TAPE 6923,PMIMIJZjp3 0511

GO TO 361 0518
366 WRITE OUTPUT TAPE 6,24,PMTMIJ•,e-,PMTM(J23,1) 0519

IF(PMTMIJ23,3)I361.361,3o1 0}20
367 WRITE OUTPUT TAPE 6,Z5,PMIPIJ23,4) 0521

GO TO 361 0522
368 WRITE OUTPUT TAPE 6,27 0523
361 CONTINUE 0524

WRITE OUTPUT TAPE 6,26,NLNLAU.... 0525
READ TAPE 9,SIM 0526
REAL TAPE 9,SIJ 0527
READ TAPE 99TSIGN 0528
READ TAPE 9,TEPSN 0529
READ TAPE 9 1 TALFI2 .... .0530..
READ TAPE 9,TALF23 0531
READ TAPE 9,TALF31 0532
READ TAPE 9,TALF44 0533
READ TAPE 9tAL1212 0534
READ TAPE 9vAL1223 0535
READ TAPE 9'ALFA44 0537
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READ TAPE 99SIGUK .0538

RkAO TAPE §,E0S'UK 0539
CALL CHAIN (3,3) 0540

995 WRITE OUTPUT TAPE 6,I6tLeW~ 0541
CALL EXIT 0542

I FORMAT( LHtJ29Xt3rHCUNTINUAIIUN kUv' INELASTIC ANALYSIS) 0543
2 FORMAT(6X9A4vEiO.69El0.1aAO0.I) 0544
9 FORMATI/7HTI STuL iJ USESý ELAsiic UNL~dOAdIN lHUUKES L 0545
IAW) WITH STRAIN HAROENINui) 05t

to FURMATIIH*,5X,2HAN) 0547
12 FORMAT(26tt ERROR- INCREMENI L.ARU Nu.91315H N.G.) 0548
16 FORMAT(33H ERROR-NU INTEiKVAL-1NL$~tmjNT CARO,13) 0549
22 FORMATI5X,16HLOAD INCREMLNIS P,9.2911H POUNDS TO 9FIO*297H POUNDS) 0550
23 FORMATILH', 6iX,-i§H0INT UuWUI t~VEKY ,F9.2.7H PUUN33T-S) - 0551
24 FURMAT(5XI6HT;ME INCREMENI'S ,a-i.4#IIH HOURS TO ,FIO.416H HLUURS) 0552
25 FORMAT(IH+,61XI9HPRINT UuTPuT kVtkY tF9*496H HOURS) 0553
26 FORMAT(//5X@13,48H NON-INk;AEMENf LYLIES AT EACH LUAU OR TIME LEVkL 0554

1) 0555
27 F(eU4AT(5.X,35HSTORE MEMORY .jiN IAPt A-6, THEN EI)0556

* CHAIN(3,3) 0558
* LISTS 0559
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451263 GRUMMAN AIRCRAFT ENGI~ittRAltu' 6uO (CCF. NJ. 45L28 LINK( 3 _____

C4512d3 MATRIX ANALYSIS OF INtLLMSIlC PLATE LINK 3 - WITH CREEP 0561
C THIS IS THE SECOND HALF Ul- ULU LIN& 2 0562

THIS LINK READS IN A SAVtu otitAKY IAPE - SECUNrl PART 0)63
COMMON TEFSTN, TOTEPS 0564
COMMON KLU4, KLU5, KLaUu, KL08, NA9 NC, K 0565
CUMMON KERRSvi, NINCLO, &ý PM, Et tNU, SHRMUD Oj66
COMMON ALPHA, BETA, vAMiMAt TIME, KLUISO 0-67
CUMMON PMTM, KPMTM, 41g LJ TSIGN, TEPSN oiba
COMMON TALf-12, TALI-?3, TALi-,Ji, JALF44 0569
COMMON ALLZ212 AL1223# Ad AZJL9 ALFA-t4 0573
DIMENSION TALF1It(I),TALh-zJILLI,TALk-3LI(),TALr44'(11) 0571
DIMENSION AL 1 5 Ldj nj9LZ1 5 Aý446 0572
COMMON SIGUK., EPSUK 07
COMMON SUBiARN', SGIBAMP# SwdAfhtf EI'dAKNv EPBdARPq UELEPN 0574
COMMUN EPCNK, EPCNP 6575
EQUIVALENCE (TIMKIqTEFSTf4),4lIutPS#UELEPK) 0576

C THESE FOUR AARAYS ARE E~ulvA~tNCtJ TO SAVE CURE SPACE. 0577
DIMENSION T IMKI (55), TEF5Ii%(5:j * uitPS(165) ,0LECPK( 165) 057d
DIMENSION PMTM(10,3) ,PMIMILu),bM(165),S1J(165,165),TSIG(dLIi 0579
DIMENSION TEPSN(11),SIGUK~loi),o~bUK65),SGBARNi55),SG8APP(,5sI n580
DIMENSION SGARM(55hvEPBAj,4(po5tARP(55),DE -LEON(55),EPCNK(,5) 0581
DIMENSION EPCNP(55) 0582
REAt) TAPE 9,SGBAKN 0583
READ TAPE 9,SGBARP 05d4
READ TAPE 99SGBARM '1585
READ TAPE 9,EPBARN 0586
REAL) TAPE 9,EPSARP017
READ TAPE 99DELEPN0 b6
READ TAPE 9,EPCNK 0589
READ TAPE 9,EPCNP 01390

C SUBROUTINE RUN REWINDS Aiia) UNL.JAL) THE DESIGNATED TAPE 0591
CALL RUN(9) (1592
PRINT 31 0593
WRITE OUTPUT TAPE 6,5*E*SHKM4.hiPNO 0594
wRITf- OUTPUT TAPE 6,6 0595
00 149 1~1,#LL 0596

149 WRITE OUTPUT TAPE 6,7,11,FSL~'di),~iTEPSN(I1),TALIV'12(11),TALF~jsU1 0597
19TALF3i~iI),TALF44(I11 0598
CALL CHAIN (403) 0599

5 FORMAT(26t40 MODULUS OF ELASTILiIY - ,F11.094H4 PSI96X916IISHFAA MOUU 0600
LLUS a ,111.094H PSI,6X95rvJ 11 v~.l 0601

b FORMAT(41H0 TABLE OF VALUES Ewk it Ti(ESS-STRAIN CURVE II0602
LsXvZ9HPOINT STRESS LEVEL iTKA4LNq7Xq8HALPHA lZ,7X,8HALPHA 13,7X 0603
IvSHALPHA 31,7X,8HALPHA 4d./kaoAvM4PSA,9X,7HIN./IN.//) 0604
7 FORMATI8XI3,2X,Fll.2,5(3XFi~j.8J) 0605

31 FORMAT(11H01F NECESSARY lu SruP THIS RUN BECAUSE IT EXCLEUS THE r 0606
LIME ESTIMATE, PUT A RING Iii THE 4AVr TAPE ON A-5 AND CHANGE IT 1 0607
256H TO DRIVE A-6 TO UPOA~T its TriN PUT SENSE SWITCH 6 (iN. I)0608

* 0610
0 SAVE TAPE 8-1 UNLESS ON-Lb-sk PRIANT SAYS IT 1 AS BEEN PROCESSED 0611

* 0612
* PUT SENSE SWITCH 6 ON 10 ENOD THE KUN IF IT EXCEEDS THE TIME ESTIM. 0613

* 0614
* IF PAUSE t~ OCCURS (SENSE SoITCH a 0A INTERNAL CONTROUL), MOUNT A 061S
* BLANK TAPE ON A-6. THIS JAPE WILL HAVE RESTART DATA WRITTE~N ON IT, 0616
* AND M4UST BE SAVED* 0617
* C4AIN(4v3) 0618
* LISTS 0619
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451284 GRUMMAN AIRCRAFT ENGINLtaA~ftb IJKP. DECK NU. 45Lid LINK 4 ____

C451284 MATRIX ANALYSIS (OF INELA.N!~ý.1L419E- LINK 4 -WITH CREEP. 0621
C THIS LINK OUES THE CALCULM5i UJ4 AN) wRliTES PR~INT UUTPUT 0622

COMMON TEFSTN, TOTEPS 02
COMMON KLU4, KLU5, KLUo, KLU89 NA, NC, K (1624
COMMON KERRSW9 NINCLO, K~t1, PM, Et GNU, SHRMUJO 0625
COMMON ALPHA,. BETA, vAMMAt TINE, KL&JISO Uo26
COMMON PMTM,' KPMTM, ý ~IMI. .414. TSIGN, IEPSN- 0627
COMMON TALF12t TALF23* TALI-i1, TALIý44 0628
COMMON AL1212t AL12239 ALI.2JLt ALFA44 0629
DIMENSIUN TALF12(111,rALe-ei(LLJ@dALF31(1IITALF44(LI) 0030
DIMENSION AL1212(55),AL12.~,(53J,A~L231(55JALFA44(55) 003L
COMMON SIGUK, EPSUK 06332
COMMON SGBAKN, SG8ARPV S"AA~j, ;PtsA&NL.PA' DELEPN -0633

COMMON EPCNK, EPCNP 0634
EQUIVALENCE ITIMKltTEe-STNdtlTUTU:PDkULEPKI 0635

C THESE FOUR ARRAYS ARE tQuIVALEN~ta I T SAVk CORE SPACE. 063b
C THEY ARE NUT THE SAME, bur ARE NUT NEEDED AT THE- SAME. TIME 0637
C AND DO NOT CARRY FROM~ CYLLt Tu LYL.LE. Ob63

UIMENSIUN T.IMK1(55iTEFSINt:iJ,)T-jF.ke~tl45)IaELEPK1165f. 0j-39
DIMENSION PMTM( 10,3) ,KPMrmiiu)tSAM4(i65),SlJ( 1659165),TSIGN(11) 04
DIMENSION TEPSN(11) ,SIGUK(L6~ojEiýuK1165j,SG$ARN(55),SGSARPt,55 0041
DIMENSION SG8ARM(55),EPbAs.N4i5),cPbARP(55),DELt-PNI55),EPCNK(D5) .Otj42

UIMENSION EPCNPf 55) 0643
KSET - KSET 0644
KERRSW - KgRR$W . 0645
GO TO (4189419),K[ERRSW 0646

C, INITIALIZE WORK AREAS 0o4 7
418 D0 102 11 - 1@165 0648

EPSUK (11) - 0.0 0649
102 SIGUK(11) -0.0 0650

DO 103 I ..A,55 .o.. 051
DELEPNI II) -0.0 0652
SGBARN(II) -0.0 0653
SGBARP(II)= 0.0 0654
SGBARM(11) = 0.0 0655
EPBARP(I1) a0.0 0Oo56
EPCNK(.I1).- 0.0 0657
EPCNPfII) - 0.0 0658
*AL121Z(1I)- 2.*TALFl122) 0659
AL1223111)i TALF12(21 + TALFZ3(.41 0660
ALlZ31(II)- TALF12t2) + TALI-3LIel 0661
*ALFA44(11)= TALF44(2) 06

103 EPBARN(.I1) =0.0...............................0663
KSET - 1 0664
TIME -0.0 06o5

41.9 CONTINUE 0666
* .REWIND 8 0b61

KSET zKSET 0668
KERRSW *uERRSW 0669
NINCPM - NINCLO + 2 0670
NINTUT a NINCLO + 1 0671

151 K a K +1 0672
KLU2 z1 0673

C IF KLU2 Do0 THE CYCLE 01- UPtRATIUNS WILL BE PRINTED 0674
C KLU6 L WI.LLPRINTy~ EVR YCLE,. U WILL PRINT ONLY SELECTED CYCLES 0 675
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C. KLUd 0 WILL PRINT ALL MfoI~fLLat NUN-LF.RU PR~I141S SELECIEt) UONES 0676

IF (KLU6)248#248,2 49  0677

249 KLd? a 0 0679

248d CUNTINUE 0680
IF(K-1)270. 270,271 0680

210 KLU2 0 06b1

271 COINTINUE 0683

GO TO (416,417)vKERKSW 0683

417 KLU2 m0 0685
KERRSW =1 Ou68

*410 CONTINUE vmmo0o SDICRETLODO 6b

Cý KSET IS THE ROW OF KPMTM UK~PTIb1UU~OIURN OOO 06b8

C TIME LEVEL) 0688)

300 IP(KSET-11)301,31
9, 3 1 9  0690i

301 IF(KPMTM(KSET))302v30
2 v30 J 0690

302 KSEI - K~tT + 1 0692

GO TU 300 
09

303 IF(KPMTM(KSET)-4130
4 *302#.i2 

0693

C VARIAreLE (J24) INUICATES A LUAUJ 6YL.LE 1109 A TIME CYL.LE 12), 3h94

C OR WRITE MIEMORY ON A SAVe TAPE 413 0695

304 J24 -KPM!M(KSET) 
0696

KSET a KSET 
06397

KERKSW = KERRSW 
0698

IF(PM1MIKSET,2)) 342 ,342vJ'*1 
0699

341 GO TO I30593159423htJ24 
0700

342 GO To 1 345 ,355,423)tJ24 
0701

305 IFIPMTM4(KSET,1)91-PM+PMTMtK.)iTaZJiJ)06,
3Ol. 3 08 0703

34!ý IF(PMTM(KSET,1)1(PM*PMTMLNET,21))IiO8
3 0l93 0b 0704

307 IF(NINCLD)309,3O9
9,3O8  

0

309 KLU2 -0 
0705

308 OELPM = PMTtMiKSET*2) 
0706

GO TO 154 
0707

306 IF(NINCPM-2j 316,316,154 
0706

316 KLU2, -0 
0709

GO0TO 302' 
0710

315 IF(PMTN1KSET,1)1(TIME+PKM4I(&ST,2j))
3 O6,3ll,3IM 0711

355 IFIPMTM(KSET,1)-(TIME+PMTM1KSEkftZ)) 1318,9317,306 
0n132

317 IF(NINCLO)3149314,
3 1 8  0114

31'. KLU2 = 0 
01

318 OELTIM= PMTMLKSET,2) 
0715

GO TO 330 
0716

319 !F(KLU2)205120
5 13 20  

0117

320 Kid? = 0 
0718

KSET aKSET -1 

0719

IF(KSET)2059205,32
1  0720

321 IFfKPMT?4(KSET))3Z0,320,3z2 
0721

322 J124 =KPATM(KSETI 
0722

GO TO (3080318)9J24 
0723

Y! " *fNINUE0724

I .~ .4 1NUE 
0725

33: ONTINUE 
0726

lFtNINCLO)01,
5O 019SIO 

0721

$10 IFIK-1)501#501#5ll 
0728

$11 NINCPN a NINCPM - 1 
0729

IF(NINCPN-3I S1S391,515 
0730

5 13 CONTINUE 
0731
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GO TO |5O19512),NINCPM 0732
C NINCSW a I MEANS THIS IS A kL-LYC.. STEP INO LOAU UR TIME INCREASE) 0733
C NINM. a 2 MEANS THIS IS LAbJ AK-uYLLE AT THIS LOAU UR TIME LEVEL 0734
C NIN,,' = 3 MEANS THIS IS A LUAU uK 1I1E INCREMENT STEP 0735

511 NINC.;W = 2 0736
GO 10 514 0737

51S NINCSW - 1 0138
GO TO 514 0739

501 GO TO 1502,503),J24 0740
502 PM - PM + DELPM 0741

GO TO 504 0742,
503 TIME = TIME + nELrIM 0743

504 NINCPM = NINCLO + 2 0744

NINCSW * 1 0745
514 CONTINUE 0146

IFININCLO)5249524#525 0747

525 NINKCY = NINCLO + 3 - NINLPM 0748

GO TO (523,5249524),NINCSw 0749
523 NINKLU - NINKCY - 1NINKCYiLu)*LU 0750

IF(NINKLUI3289524o328 0751
C NINKCY IS COUNT OF TOTAL LY(LLb AT IHIS LOAD OR 1IME LEVEL 0752

C NINKLU = 0 WILL PRINT EAkH TENrTi iYiLE IF THIS LIJAD OR 0753
C TIME LEVEL IS TO BE PRINTED 0754

524 GO TO 1324,325)tJ24 0755
324 CALL OUTPUT(PMPMTMIKSbTj)tK(.L4. .... 0....0756

GU TO 326 0157
325 CALL OUTPUT(TIMEtPMTM(KSct[JJ#KLUL) 0758
.32b IF(KLU2)327,328v327 0759
327 KLU2 = KLU. 0760
328 CONTINUE )761

IF(TIME)333*3339332 -062

332 GO T0U333,337),J24 0763
C COMPUTE RiFERENCE CREEP Tift FuA ALL NODES 0764

337 00 331 13 = 1,NC 0765
EPCNPII3)| EPCNK(13) 0766
FACNUM - ABSF(EPCNP.(13)) 0767
EXPON = BETA*ABSF(SGBARN(13.1. . .... 0768
FACON1 -1 2.71828183**EXPJN)-1. 0769
TIMKIII31 - IFACNUM/IALPHA*FAL•NIJI**(I1./GAMMAI 0770
GO TO (3369336*334),NINCbw 0771

336 CONTINUE 0772

'EPCNK(13) - (ALPHA*(TIMKLIA3) I**GAMMAI*FACDN1 0773
GO TO 331 0774

334 CONTINUE 0775

EPCNKI3) I ALPHA*(TIMKL( 13+IjULT11)**GAMMA)*FACDN1 0776
331 CONTINUE 0777
333 CONTINUE 077d

8 156 FA - 214747433125 0779
KLU9 - 1 0780
IF(KLU2)250t250,251 0781

250 CONTINUE 0782
C LABEL - APPLIED LOAD 0783
B Fe - 246043462124 07ld
a FC m 606060606060 0785

KLUSIZ = 2 .. 0786
WRITE TAPE 8;KLU9gKLUSIZsfAvF-B"CFPN;TIME 0787

1OT
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251 CUNTINUE 0788
KLU9 =2 0789
IF(KLU2+KLUS)252,252,253 0790

252 CONTINUE 0791
C LABEL a REF. CREEP TIME 0792
B FA x 5125Z6336023 0193
a F8 5125254760o3 0194

6 FC z 314425606060 0795
WRI1E TAPE 8qKLU9t NCtr-Avft-FkttI4|MKL (Jlj3JizljNLI 079(p

8 FA x 252626346023 019R
a P8 x 5125.5476062 0799
a FC a 635121314560 0800

WRITE TAPE 8,KLU99 N#.•#,JI-LtlEPCNK IJI)YJI=LtNC) 0801
253 CONTINUE 05102

C SAVE PRECEI)ING CYCLE VAL~jtý uor tPOAAN 0803
DO 152 I1 = 1,55 0804

152 EP*ARP(II) EPUARN(II) 0405
C CALCULATE NODE STRESSES - 4AIRIA S14UK - FRAME SIZE 165 X I 0806

0O d61 15 = s1NA 0807
SIGUKI(151 SlMIIS)*PM 0808
DO 861 16 = 19NA 0809
SIGUKIIS| a SIGUKII5) + SIJ(I|5Io)*EPSUK(I6) 0810

861 CONTINUE 0811
IFIKLU2)254,254,255 0812

254 CONTINUE 0813
C LABEL = NOUE STRESSES 0814
a FA = 454624256062 0815
8 FB - 635125626225 0816
a FC a 626060606060 * 0817

WRITE TAPE 8,KLU9, NAtFAinFC#ISIGUK IJ1),JL=lNAI.. C818
255 CONTINUE 0819

C CALCULATE MAGNITUDE AND lti iU Of t 1FrCTIVE STRESS AT EACH NUUL 0820
C CALCULATE EFFECTIVE STRE.Ea - MATRIX SGBARN - FRAME SIZE 55 X 1 0821

00 166 I? w 1,NC 0822
SGdARPIi7) - SGBARNII1I 0823
N3 - 3*17 0824
"M32 - M3-2 0825
M31 = M3-1 0826
SGBARN(I7)=SQRTFtAL12311LJ)*$LbUU(M32I**2-ALL212I1T)*SIGUK('M32)* 0827

LSIGUKIM31)eAL1223II7)*SIlUI(t4j)**2+3.*ALFA44(I7)*SIGUK(M3)**2I 0828
166 CONTINUE 0829

IFIKLU2)256t256,257 0830
256 CONTINUE 0831

C LAdEL = EFF. STRESSES 0832
B #-A a 252626336062 0833
8 FS a 635125626225 0834
a FC a 626060606060 0835

WRITE TAPE 89KLU99 NCFAFUfCISGBARN1J1),JI=,INC) 0836
257 CONTINUE 0837

C CALCULATE EFFECTIVE INELASTIC STRAIN FOR EACH NUDE - INTERPOLATE 0838
C IN TABLE tTSIGN VS. TEPSN) 0839

00 181 18 = INC 0840
C. SGBARP IS EFFECTIVE STRESS UF PREVIOUS CYCLE 0841

IF(SGBARNI IB-SGBARPI18))411,401,401 0842
C EFFECTIVE STRESS IS ABOVE PREVIOUS LEVEL 0843
C SGSARN IS EFFECTIVE STRESS UF LASI CYCLE TO SHOW AN INCREASE 0844
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401 IFISI.8ARNi18)-SG8ARM(I8)I)'A1,4ue,4O2 0845o
C EFFECTIVE STRESS IS AHUVL K.'tt Ul- aPKEVIOUS DRUP-tJFF, IF ANY 04

4U2 IF(SGBAIRP(18)-SGBARM(I8)IlO3.4Uj,44J3 0847
403 SGBARM1I18) 2SGHARN(18) 0848

O)U 171 19 = ,11 Ub419
ESUPRK m(SL;8ARN( 18)/E) + EFUARP(18JI~!)
IFtESUPRK-TEPSN(I9fl1?13,114,111 0d51

171 CONTINUE0 5
GO TO 998 085J

172 BARSGN =TSIGN1191 0854
IFISGBARNII8)-TSIGN(21)110,1177,lI 0855

177 AL12121 16)- 2.*TALF12( 19) 0Ol5o
AL1223118[= TALF12(I91+ TALF4.illfl 1857
AL1231(I8)= TALF12II9)+ JALF.s1(I9) d~
ALFA44I 18)= TALF44( 19) 0859

178 CONTINUE 0460
GO TO L74 0861

113 KKK? 19 fl862
KKKI a 19 - I 0861
STNRAT = (ESUPRK-rEPSNIKKKLI)I/tPSNIKKK2)-TEPSN(KKK1)) 0364
BARSGN = TSIGN(KKKl)II+(1AtNIKKKZ)-TSIGN(KKK1))*SINRAT 0465
IF(SGBARN(18)-TSIGNI2))17o,115115 0866

115 CONTINUE 0867
ALFA12 = TALF12(KKKL)+ITA~faKI~K2)-TAL-12(KKK1))*STNRAT 0868
ALFA23 - TALF2.3(KKKI)+tTALF 2(.KKKJ )-TALF23(KKKiI)*SrNRAT 0869
ALFA31 = TALF31(KKK1)+I1ALF311KKiK.)-TALF31(KKK1)I*STNRAT 0870
ALFA44(18)=TALF44(KKKI).IIALF44iKKK2)-TALF44(KKK1))*STNkAT 0871
AL1212(181= 2.'ALFA12 0872
AL1223(18)= ALFA12 + ALFA2J 0673
AL1231(18)= ALFA12 + ALFA-il 0874

176 CONTINUE 087&j
GO TO 174 0816

174 EPBARNI18) = ESUPRK - BA&kLN / E 0877
C CALCULATE TOTAL EFFECTIVc STRAIN -MATRIX TEFSTN -FRA14E SIZE 55XL 081b

TEFSTN( 18) -ESUPRK 0879
415 TEFSTN(18) a TEFSTN(I8) + EPCNK(ldl 0880

C CALCULATE tFFECTIVE STRAIN LHAN4btS -.MATRIX DELEPN -FRAME 55 X. 1 0881
C CALCULATE INCREMENTAL E~f~tkTIVE INELASTIC STRAIN .0882

DELEPN(18) = EPBARNII8) - EPBAaRPI18) 0883
GO TO (4209425)9J24 0884

425 DELEPN( 181 = DELEPN(18) + EPLNK~lal EPCNP1181 0885
420 CONTINUE 0886

GO TO 181 . * 0887
C DROP-OFF OF EFFECTIVE STKL.-s 0888
C OR STILL BELOW THE KNEE Uh* PREVI~JUS UORP-OFF 0889

411 EPBARN( 18) = EPBARP( 18) 0990
TEFSTN(I8) -EPBARPfI8)+ASBAN~tl~dl/E) 0891
TEFSTN1I8) - TEFSTN(18) + EPLNKtIai 0892
DELEPN(18) - 0.0 0893
GO TO (4249426),J24 .0894

426 DELEPN( 18) =EPCNK(I8) - EPL.NPI181 0895
424 CONTINUE 0896

GO TO 181 0897
181 CONTINUE 0898

IF(KLU2*KLU8)266j466j4§...................... 0899
266 CONTINUE 0900
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C LABEL a EFF.PLASTIC S.AALv 0901
8 FA a 252626334743 0902
B FB a 216263312360 0903
d FC = 626351213145, 0904

WRITE TAPE 8,KLU9, NCFA#1D0F•,iEPiARN(JI)9JI=ItNC) 0905
267 CONTINUE 0906

IF(KLU2)25d,258,259 0907
256 CUNTINUE 0908

C LABEL - TOTAL EFF. SIRAIN 0409
B FA = 634b6321436Q 0910
B S 2W262b336062 1)911
8 FC a 6351213L4560 0912

WRITE TAPE 8,KLU9, NCU'kfoEvtF69IEFSTNJI)IJ I= INC) 0913
259 CONTINUE 0914

00 862 125=1,NC 0915
8b2 TEFSTNI125) a 0.0 0916

C CALCULATE NODE STRAIN CmA.'k -' MHAKIX DELEPK - FKAME SIZE 165 X 1 0917
D0 191 111 a 1tNC 0918
TEMPA O OELEPN(ILIJ/ bLiARN(I11) oq09
M3 = 3*111 0920
M32 - M3-2 0921
M31 - M3-1 0972
OELFPK(N32)=TEMPA*(AL1Z3&LtALAJ*,ý|UK(M32)-.5*ALdI211I*LJSIGJK(j43I 0923

1)) 0924
OtLEPK(M31JTEMPA*IALi21i1IiLJ*sIuN(M31)-.5*AL1212IILI)*SlIUK(MJi. 0925

I)) 0026
DELEPK(M31 -TEMPA*{3,*AL.A44tA&IJ*41GUKIM3|)J 0927

191 CUNTINUE 0928
C CALCULATE NODE PLASTIC SIKAIN - MATRIX EPSUK - FRAME SIZE 16t X 1 0929
C CALCULATE NUOE PUINT STRAINS 0930

00 192 123=1tNA 0931
192 EPSUK (123) = EPSUK 1123J + OtLEPK1I23) 0932

IF(KLU2+KLUB)260,260t261 0933
260 CONTINUE 0934

C LABEL = EFF.STRAIN CHANGta 0935
B FA - 252626336263 0936
a FB - 512131456023 093?
a FC a 302145272562 0938

WRITE TAPE 89KLU9, NCtPI-,h*F.ttJELEPNlJIjtJl1ItNC) 0939
C LABEL - NUDE STRAIN CHANtit 0940
8 FA - 454624256062 0941
8 FB = 635121314560 0942
B FC - 233021452725 0943

WRITE TAPE BKLU9@ NAFAtFbtFCIDELEPK(JL),JI=itNA) 0944
C LABEL = NUDE INELAS.STRAIN i 0945
B FA - 454624256031 0946
B FB - 452543216233 0947
a FC a 626351213145 0948

WRITE TAPE 89KLU9, NAFA*FbFC9|EPSUK JI~),J1=1,NA) 0949
261 CONTINUE 0950

C CALCULATE TOTAL NUDE STRAINS - MATRIX TOTEPS - FRAME SIZE 165 X 1 0951
00 201 114-19NC 0952
M32 - 3*114-2 09S3
131 a 3*114-1 0954
M3 - 3*114 0955
TOTEPSIM32I=EPSUK IM32)4SI÷,KIMHdi/E -GNU*SIGUKIM31)/E 0956
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TUTEPSIM3I)=EPSUK (M31)+414jUKIuJJIit -GNU*SIGUKIM323/E 0957
201 TOTEPSIM3 )=EPSUK (M3 ).Sl6UK(IM I/bHRMOD 0958

IF(KLU2)262*262v263 0959
262 CUNTINUE 0960

C LABEL = TOT. NUODE STRAINS 0961
SFA a 634663336045 O0 b2

6 FB a 462425606263 0963
B FC - 512131456260 0964

WRITE TAPE 8,KLU9, NA.*AedtfI .IlOTEPSIJI1)J:I=NA) 0965
263 CONTINUE 0966

IFIKLU2)2689268,269 0967
268 CONTINUE 0968

KLU9 m 3 0969
KLUSIZ a 2 0970
WRITE TAPE dtKLU9,KLUSIZ. At.PM9PNPMTIN£ 0971
IF|NINCLDI2699269,273 0972

273 CONTINUE 0973
KLU9 = 4 0914
KLUSIZ a 2 0915
WRITE TAPE 8,KLU9,KLUSIZPN.OMeP94,AaNKCYNINrOT 0976

269 CONTINUE 0977
IF(NINCLD)370,370,371 0978

371 IF(NINCSW-2)422,3709422 0919
310 CONTINUE 0980

IFISENSE SWITCH 61421,422 . .0981

422 CONTINUE 0982
GO TO 1SI 0983

421 IF(KLU2)4239423,208 0984
423 CONTINUE 0985
205 KLU9 7 1 0986

B FA = 777777777777 0987
00 206 125 liO_ 0988

206 WRITE TAPE 8,KLU9gKLU9,FAsFAtFAFAFAFAFAFA,FA,*-A 0989
END FILE 8 0990
END FILE 8 0991
END FIL[ 8 0992
END FILE 8 0993
ENO FILE 8 0994
END FILE 8 0995
REWIND 8 0996
IF(SENSE SWITCH 6)207,209 0997

209 IF(J24-321,ZO2079210 0998
207 CONTINUE 0999

PAUSE 1 1000
REWIND 1l 1001
CALL CHAIN(5.3) 1002

210 CONTINUE 1003
CALL CHAINI6*3| 1004

208 KERRSW = 2 1005
C KERRSW SET TO 2 TO MAKE KaLUV2. AND PRINT A CYCLE 1006

GO TO 151 1007
998 KLU9 a 6 1008

KLUSIZ a 3 1009
WRITE TAPE 8,KLU9,KLUSIZ* KsI8vPMkSUPRKvSGdARN(I8).TINE 1010

•. 'GO TO 205 . .. •loll
SENDI~t~tOtOvOOtotlvtow19t9004)900U|

" " LISMS 1013

311.



SUOROUTINE OUTPUT(VALU~ltSJLPLINLUi) 
1014

C THIS SUBROUTINE SETS KLUL U IF ilic CURI'tNT CYCLE IS TO BE PRINTED~ 101.5

VALUE aAtISF(VALUEI) 
1016

STEP zABSFISIEPI) 1011

102 IF(VALUE-STEP)131910091OO 
Io1la

100 NTES11 2 lVALUE/STEP)I*.U0OOI 1019

NTEST2 (VALUE/STEP)+.9')a IU20

IF(NTESTI-NTEST2'I131,130,131 
1021

.130 KLUI 30 
1022

GO TO 135 
1023

1,31 KLUI 21 
1024

13S RETURN 
1025

ENOII,1,O0,0,0,1,1,0,IO,10OOt,oO)

* CHAINIS,93) 
1027

LI1SIS 
1028

112



451905 14.M~ AIRCRAFT ENGINkLRING CORE. DkCX NO. -012V IN 5 ______

C451285 MATRIX ANALYSIS OF i wiNATc PLATE - LINK 5 - WITH CREEP 1030
C THIS LINK WRITES A SAVE TAPE FUR RkESTART 1031

COMMON TEFSTN. TOTEPS 1032
C6?MMON KLU4,. KLU5i, KLU6v KLU8. NA, NC, K 1033
COMMON KERRSWv NINCID. KSETt PM. E t GNU. SHRMOO J034
COMMON ALPHA, BETA, GAMMA# TIME, KLUISO 13

-.COMMON PMTH, KPMTMt SIM9 SIJt TSIGNt TEPSN 1036
COMMON TAIF 12, TALF23, TALJ3L* TALF44 .1031
COMMONL AIA212t AL12231. 12I31t ALFA44 - ~ - 1038
DIMENSION TALF121 11 PTALF23(1 LI TAL.F31I 11) sTALF44t11J 1039--
DIMENSION.I ALI 212( 55I, AL"231551 .ALLZ31455) ALFA444551 04
COMMON SIGUK9 EPSUK 1041

COMNSGSARN9 SGBARP* SGbARMv EPOARNt EP8ARPv DgLEPN 1042

;COMMON EPCNK* EPCNP 1043
~QUIVYAN E (TIMKI.TEFSTN) .5TQTEPSDELEPKI- 1044

C THESE FOUR ARRAYS ARE EGUIVALENCED TO SAVE CORE -SPACE.T - -1045-
DIMENSION TIMK 15,ESN5ITJ~P161OLPI651 1046
DIMENSION PMTMI 1Ot3bKPMTNtLUJ @51M1165),SIJII6S.165J OSIGNI 111 1047
DIMENSION TEPSN(1I.iSIGUK4165I.EPSUKI165),S$G8ARN(55),SG8ARPIS55 1048
DIMENSION SG8ARM(55),EPBAMtS5S).EPBARP(551,DELEPNSS55IEPCNKI55I 1049

REWIND ii 10s1
WRI~T.E 1UT-1-Aft Ujj_______ 3-
END FILE I1 1053
WRITE TAPE 11 ,KLU4.KLUS.KLU6,KLU8.NA.NC2K.KERRSW.N[NCLD.KSET.PM.E. 1054
1GNUSHRMOOALPHABETAGAMMA. TIMEKLUISO 1055
WRITE-TAPE tUPMTM - - 1056
WRITE TAPE 11,KPMTM. 1057
WRITE TAPE- 11,SIM N -__ 1Q58
WRITE TAPE 11.SIJ 1059
WRITE TAPE 119TSIGN 1060
WRITE TAPE 11,TEPSN 1061
WRITE-TAPE 119TALF12 _____ __ 1062

WRITE TAPE 11,TALFZ3 1083

WRITE TAPE 11,TAL1212 1065
WRITE TAPE I'1,AL1212 1066
WRIT-E-TAPE 1LAL1223116
WRITE TAPE 11,ALFA44 1069
WRi.TE TAPE-11.SIGUK -____ ________ 107
WRITE TAPE 11,EPSUK 1071
WRITE TAPE 11,SGBARN 1072
*WRITE TAPE 1LvSG8ARP 1073
WRITE TAPE 11.SGBARM - - - - - - - 1074
WRITE TA-PE 11,EPBARN 1075
WRITE TAPE_ 1I1 EPBARP _____________ - 176
WRITE TAPE !1,DELEPN 1071
WRITE TAPE 119EPCNK 1078
WRITE TAPE 119EPCNP 1019
END FILE 11 1080
EDFILE 11 1081

END FILE I1 _______ ___ __________ 1082
C SUBROUTINE RUN REWINDS AND UNLOADS THE DESIGNATED TAPE 1083'

CALL RUN 111) 1084_

PRINT 32 1065
KERRSW - 5 1086
CALL CHAINI6931 1067

32 FORMATI/I/2H 0* * SAVE TAPE A-6 FUA RESTART AT THIS POINT 01 * 1088
33 FORMAT467HCONTIN 99 SAVE THIS TAPE FOR RERUN DECK 45128 INELAST 1089

LIC ANALYSIS 3 1090
END(1,1lOO, 1.ttvO1,0,10,0.0,0,0

* CHAIN16931 1092
±LSTSJ 3 109L
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4blllbu GRUM~AA4 AIRCRAFf ENGl~itkitiv LUKO. DECK NU. 45128 LINK 6 ____

C451286 MATKIX ANALYSIS OF IL~A. PLATE - LINK 6 - WITH CREEP 1095
C THIS LINK CUNVERTS.IiINARY.eUI[PuI UN TAPE 8 TO 'lCU 1096
C ON THE MONITOR PRINT IAI't 1091

CUMMON tEFSTN, TOTEPS * I098
CUMMUN KLU49 KLU5, I4LUU9 P.LUlI NA, NCO K 1399
COMMON KEKRSW, NINCLO, K"kis PH$ Pt t4NU, SHRMflJ 1100
COMMON ALPHA, clETA9. kAf4MA, TIME. KLUISO 1101
DIMEtNSIUN TrEFSTNI55),TOhtPz~Io~l 1102
DIMENSION AkRAYI 165I.LlS5I~o5# 1103
EQUIVALENCE (FA,IFA)tIFtiAaio(FklC3.tARRAYL1STJ 1104.
REWIND 8 ilos5

101 READ TAPE 8,KLU9,KLIJSILtFo~,FdFCIARV;ý- fIJ9)Jl!-IKLUSIZl 1L06
IFIKLU9)IUI01,106,~ 1101

106 IF(KLU9-91111,I111,101 1108
III GO TOI121,122,1239124,1olea,12i,12ltL8,129),K.LU9 1109
121 CUNTINUE 1110

WRITE OUTPUT TAPE 6,22,FA,,-dFi..#flA(I13.ARRAY(I2 1111
GO TO 101 1112

122 CONTINUE 1113
WRITE OUTPUT TAPE 6,21,i-Atf-tD-LiAK.tAYtJ1),J1=1,KLUSIZI 1114
GO TO-101 1115

123 CUNTINUE 1116
WRITE OUTPUT TAPE 6v31IvIfAqAghAYlkJvARRAYj2j 1117
ýGO TO 101 1118

124 CONTINUE. TP 1119
WRITE OUTPUT TAE62LS~LS()1120
GO TO 101 1121

'126 CONTINUE 1122
WRITE OUTPUT TAPE 6#129AAKAYIL)tAKRAY(2) 1123
WRITE OUTPUT TAPE 6vI13,1i-Aqlh-b~l-CAKRAY13) 1124
GO TO 101 1125

121 CONTINUE 1126
PRINT 14 11.27
WRITE OUTPUT TAPE 6,14 1128
REWIND 8 1129
IFIKERRSIO-5 313291319132 1130

131 PRINT 33 1131
132 CALL EXIT 1132
125 CONTINUE 1133
128 CONTINUE 1134
129 CONTINUE 1135

GO TO 101 113u,
12 FORMAT(46H VALUE NOT FOUNw IN TAdLt FOR EPSILON 6AR N *E15.8, 1137

119H SIGMA BAR N = ,E15.dg2H J 1 1138
13 FORMATII6H CYCLE NUMBER ,1 tibe0t ELEMENT INDEX z 14,17H LOI 11.39

lAD LEVEL - tF9.2,IIH TIME - IF6.40 1140
14 FORMATI16H 00 NOT SAVE TAPE b-i, - If HAS BEEN COM4PLETELY PROCESSE)) 1141
II ONTO THE PRINT TAPE) 1142

21 FORMAT(// IX,3A6,t1tPEl6.1iI(19X,~ikL6.7)) 1143
22 FORMAT(//1X93A692X 9F12.2j5Xt6HfLMc niFI2.61 1144
31 FORMATIHO *161p27H CYCLES LUMPLETCU - LOAD a 9F V.2@ 114b

1 12H TIME a oF 8.4) 1146
32 FORMATIIH.,68Xt6HCYCLE st13*4H OiF 91J927H AT THIS LOAD OR 71IE LEVE 1147

IL) 1148
33 FORMATI//52H * SAVE TAPE A-* FORl RESTART AT THIS POINT * I 1149

* DATA 1151

23.4



APPENDIX VI

STRESS DISTRIBUTIONS DUE TO UNIT DNTIAL STRAINS

The basic matrix utilized in the nonlinear and inelastic analysis
described in this report is the initial strain influence coefficient
matrix [ uv]. Elements of this matrix provide the uth stress ccmponent

caused by a unit initial strain at the vth stress location. The first
description and derivation of this useful matrix was made by Denke in
1954, Reference 20. The matrix is generated by a structural analysis
which may be of the force or stiffness type.

A. Force Method Application

The method utilized here is a simple extension of redundant
structure analysis. Essentially, the additional work involved is the
calculation of displacements at the applied loads and redundants in the
statically determinant structure caused by initial strains. These dis-
placements are combined with those caused by the applied loads and re-
dundants. The final step is to adjust the magnitude of the redundants
to eliminate the total displacements at the redundants. From this point
the determination of stress distributions for the redundant structure
is carried out as before.

The displacement in the statically determinate structure at the tth

applied load or redundant due to initial strain can be expressed by use
of the principle of virtual work as follows:

tV= (A-1)

Volume of
ath member

In the above expression, otv is the displacement at tue tth unit applied

load or redundant due to the v initial strain, cat is the direct stress
th

in the a member due to the unit load, and egv is the initial strain in

the ath member at the corresponding stress point. The summation
a

indicates that the virtual work in all members affected by the induced
strain, e3, must be considered.

Equation A-I is written for the uniaxial direct stress condition
that is comnonly assumed to exisT in bar members as pictured in Figure
(1). The effect of a shear panel has been omitted in the derivation
for simplicity. Temas necessary for inclusion of shear may be derived
in a similar manner.

3u15
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Suppose that the ath member of a structure is a bar, with cross
sectional area A, linearly varying axial load oxt.A, and linearly varying

initial strain gxv.

T- -

y lv 2 t

Figure 1

Then

at 2r A('lt'

6x el(l 1~) + 2

and after evaluation

faxit - L5  L a 12ev

Volume of21a e,
ath member

where

L =L
al2 a22 3

L La12 a21

The L aij matrix can be similarly determined for other types of

structural elements. For rectangular shear panels, of dimensions b and
h, it can be shown that the La, factor for shear strain W is bh,

the panel flat plate area. For nonorthogonal structure (swept panels)
other Laij factors may be developed. The sum of such matrices for the

entire structure is designated ELi,.
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The matrix expression for the displacements at all of the applied
loads and redundants due to unit initial strain is

•.• [,i ! ,r] [iv]A-2

The e Is are the initial strains corresponding to each of the member
v

loads q.

Utilizing Equation A-2, the redundants are evaluated by

[Ocrm i rv rai 'm O

the solution of which is

where

[ q r5 y7] - acr ms'Y2 It CAr~

The member loads in the redundant structure became

{q.4- [rimo j]m A-3

where

[rT. riv] =[Yimfl -Yr] [4ý -1jr
Member stresses are obtained by pre-multiplying member loads by

the reciprocal values of appropriate bar areas and skin gages.

r'- Iou -{ [.-](r :r~
lrp

Ir, I UI IPu I I . .. I 1Li '"

then A-4m i e,

UiT



Digital computer programs which are available for conventional
force method analyses may be used to determine the rur, ruv matrices.

This is readily accomplished by redefining several input matrices.

(1) replace [ym], the usual unit load distribution in the static-

ally determinate structure due to applied loads by

ILI

(2i) x (m + i)

the unit diagonal matrix I has as many elements as there are
member loads in the structure.

(2) replace [yir], the usual unit load distribution in the static-

ally determinate structure due to redundants by

[ 21i x r

(3) replace [tij], the member flexibility matrix by

i. I i
iv~2 ox 21x~

matrix operation will now yield a load distribution matrix for the re-
dundant structure which may be identified as follows:

Me upper portion [rim 1 riv3 are the values defined by Equation A-3,
and stresses may be obtained by using Equation A-4.



B. Direct Stiffness Method

Consider a truss shown in Figure (2a) where all the nodes are
"locked" (prevented from displacing). If a strain o is induced in a

particular member it will produce
a stress in only that member equal
to o =-Ee since all the nodes

are locked. This stress requires
node forces as shown in Figure (2b).
The negatives of these node forces

4 v are applied to the "unlocked" structure
all nodes locked and the stresses in all the members,

(a) (Figure 2c) are computed. The
final stress will be the superpo-
sition of the "locked in" stresses
and the stresses produced by the
node forces acting on the unlocked
structure. That is

go produces a0

Applied loads

produce a

Figure 2

Derivation of [r and r

Consider an element of the total structure, let this element be
supported in a statically determinate fashion. The total strain e is
then written as the sum of two strains namely e. - the strains due to

stresses, and - a set of induced -strains. Thus

Iej -- 01+ (co] -i

Rewriting this,
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The stresses may be expressed in terms of the strains by using Hooke's
law,

(a) = [h][ebl• B-3

Thus

(a) = : b](e) - b]eo 0) B-4

[e) (the total strains) may be expressed in terms of the displacements
of the nodes that affect the particular member in question. That is

[e) = [a][6) B-5

It should be noted that the expression contains the basic assumption
governing the behavior of the element. For example, for a triangle or
bar element it will contain the assumption that the strains are constant
throughout the element. Substituting this into Equation B-4

(a] = [b][a](6] - [b][e0o B-6a

= [sdl163 - [hbio}l B-6b

From virtual work it can be shown that the nodal forces Iff,
associated with t6], may be expressed in terms of the stresses by:

f] (a] (a]• dv B-T
11oll

Substituting B-6a into B-7 yields:

If) = ofia3T b][a] 6]dV - foa]T b][eo]dV B-8
V ol.1 Vol

For simple elements such as bars or triangles where the strains are
assumed to be constant over the element none of the matrices within the
integrals will be functions of the coordinates x, y or z and hence they
are independent of the integration. The first portion of (B-8) yields
the standard stiffness matrix (k] while the second portion yields the
nodal forces due to induced strains (40).

If) [ (k)[6) - V[a] (b)(,o} B-9
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In this expression, V is the volume of the element. Noting that

[a]Ttb]= [[o][a]]T = [SdIT yields

[ff [k][6] - V Tsd3To , B-10

The total stiffness matrix 'for the entire structure is obtained by

superposing the stiffnesses for the individual elements to yield:

[F) = [K]({A - [Sd]TCV]fCoT] B-II

Where [F] represents all of the external nodal forces, (A) represents
all of the nodal displacements, (CoT] represents a column of all the

induced strain conponents and [V] is a diagonal matrix containing the
values of the volumes of the various elements. (Note that for a triangle,
where three strain components may be induced, the volume will appear
three times). [Sd ] is the total stress matrix array which is obtained

by proper arrangement of the individual stress matrices rsd].

Applying boundary conditions (via matrix [BC]) to equation (B-li)
and introducing the applied external loads (P), with nodal distribution
[L], yields:

T T T[L][P} = [BC] [YK][BC](A' - [,BC] ESd) [VICoT} B-12

which may be solved to give the allowed nodal displacements under the

boundary conditions:

(a'} [.y[1'[L](]P} + [mir_[BC]-T]T[Sd]T[V](eoT] B-13

where

[Y-11] [BC] T[K][BC]

For the total structure, B-6b may be written as:

I(T] TSd](A] - B-i

where [B] is a diagonal block of the elastic relations [] for each
member. Substituting (B-13) into (B-14) and using the relation [A)
[W [AI I yields:
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(aT] [Sda] ][tKl]_) 'L]P]

+ [s d )cBC]cK1 l ~[B Sd]T~ -V [BJ [COT) B-15

which, to use the previous notation, may .be written as:

(%] = [r ][Pm + [(ru][ev] B-16

The first matrix, [ru],of this expression', is the conventional distri-

bution obtained for unit applied loads ad indicated in Section A of this
appendix.
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